66医疗AI时代的生物医学Go编程:高性能计算与精准医疗的案例分析(八)

在这里插入图片描述

5.4 性能测试与结果分析

为了评估GoEHRStream的性能,我们设计测试模拟真实的医院数据流场景,并测量关键指标。

5.4.1 实验环境

  • 硬件:
    • CPU: Intel Xeon E-2288G (8 cores, 16 threads)
    • RAM: 32 GB DDR4
    • Storage: 512 GB NVMe SSD (用于GoEHRStream和BadgerDB)
    • Network: 1 Gbps Ethernet
  • 软件:
    • OS: Ubuntu 20.04 LTS
    • Go: 1.19
    • GoEHRStream: 配置见下文。
    • 数据源模拟器: 使用Go编写的程序,模拟多个HIS系统并发发送FHIR Observation事件(生命体征)和HL7 ADT事件(患者入院/转科/出院)。
    • 输出目标:
      • InfluxDB v2.1 (部署在同一台机器上)
评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allen_Lyb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值