- 博客(24)
- 收藏
- 关注
原创 pytorch分布式训练代码编写
一、单机单卡模型拷贝(原地操作)model.cuda()数据拷贝(赋值操作)data = data.cuda()判断GPU是否可用torch.cuda.is_avaliable()模型保存与加载torch.savetorch.load(file.pt,map_location=torch.device(cuda))...
2022-05-18 13:47:23
671
原创 windows Git使用手册
一、初始化本地库进入需要用git管理的本地项目文件夹,右键点击git bash here输入命令:git init可以看到git在本地文件夹中创建了一个.git隐藏文件夹。二、查看本地库状态使用git status命令查看本地库状态:On branch master 提示当前处于master分支下No commits yet 提示当前还没有提交文件红色的文件 表示这些文件还只是存在于工作区,没有被追踪三、添加暂存区添加暂存区命令:git add [文
2022-05-09 11:27:16
814
原创 Prototypical Networks for Multi-Label Learning(PNML) 阅读笔记
一、概述最近对小样本学习+多标签分类很感兴趣,找到一篇原型网络来做多标签分类的文章,很符合我的需求,所以来读一下。文章是2020年完稿的,但还没有发表,所以没有开源代码。二、创新点通过联合估计非线性嵌入空间(nonlinear embedding space)中所有标签的类别分布来解决多标签学习问题,有效利用了非线性标签依赖性和特征标签预测关系。三、方法上图里面符号很多,逐一来看一下。k=1,2,…,K,一共有K个标签;Epos_k\mathbb E_{pos\_k}Epos_k代
2022-01-05 11:12:50
1122
原创 《PhysGAN: Generating Physical-World-Resilient Adversarial Examples for Autonomous Driving》学习笔记
模型模型由四个部分组成:一个编码器 ε\varepsilonε;一个生成器ggg;一个判别器DDD,和目标模型fff编码器E代表目标自动驾驶模型f的卷积层,该模型以3D张量为输入,并用于提取视频的特征(原始特征和扰动特征)。生成器ggg的输入为原始视频片段XorigX_{orig}Xorig经由编码器 ε\varepsilonε抽取出的特征,输出为对抗样本(道路标识)SadvS_{adv}Sadv。判别器DDD的输入为SadvS_{adv}Sadv和真实的路标样本SorigS_{orig}
2020-07-10 19:41:08
806
原创 《How to make a pizza: Learning a compositional layer-based GAN model》学习笔记
模型G+G^+G+是用来添加对象到输入图像Ir−I^{r-}Ir−中的生成器;G−G^-G−是用来从输入图像Ir−I^{r-}Ir−中删除对象的生成器;对应输入图像I∈RH×W×3I\in{\Bbb{R}}^{H\times{W}\times{3}}I∈RH×W×3 图中M+,M−∈[0,1]H×WM^+,M^-\in[0,1]^{H\times{W}}M+,M−∈[0,1]H×W,为图层蒙版,用来指示如何添加或删除图层的每个像素;A+∈RH×W×3A^+\in{\Bbb{R}}^{H\times
2020-05-16 11:08:42
388
原创 《Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles》学习笔记
摘要作者提出了一种灵活地对抗攻击的方法:AdvCam,用来产生和伪造对抗样本。AdvCam可以生成较大的扰动,可自定义攻击区域和风格。 它对评估DNN网络抵抗来自物理世界的干扰非常有用。在数字和物理世界场景中进行的实验表明,AdvCam伪造的对抗样本具有很高的隐蔽性,在欺骗最新的DNN图像分类器时仍然有效。一些概念对抗攻击有两种不同的应用场景:1.数字情况(digital setting...
2020-04-10 15:36:11
2731
1
原创 《SalGAN: visual saliency prediction with adversarial networks》学习笔记
最近在准备立项的事情,所以看一些应用相关的文章。摘要作者首创性的将GAN模型应用于模拟人的视觉的注意力机制,预测图像中容易受到人关注的部分。视觉注意力机制参考https://blog.csdn.net/SoyCoder/article/details/82055717模型结构生成器:卷积编解码架构,和VGG-16模型几乎完全一致,只删除了最后的池化层和全连接层。判别器:CNN结构...
2020-03-27 16:59:22
660
原创 pytorch 学习笔记 part15 卷积神经网络进阶
AlexNet模型import timeimport torchfrom torch import nn, optimimport torchvisionimport numpy as npimport syssys.path.append(r"D:\project\CNN进阶") import d2lzh1981 as d2limport osimport torch.nn...
2020-03-21 17:20:17
302
原创 《Self-Supervised GANs via Auxiliary Rotation Loss》学习笔记
参考了https://zhuanlan.zhihu.com/p/65394854和https://zhuanlan.zhihu.com/p/92079559背景和简介以往解决GAN模型的训练不稳定的问题是利用条件,就是生成对抗网络这种无监督的学习方式下利用标签数据。通过监督信息的方式判别器能学到更加稳定的表征,这些表征是可以应对判别器遗忘问题的。但这种方法最大的缺点是需要标注数据。作者提出了...
2020-03-19 16:59:38
961
1
原创 pytorch 学习笔记 part14 过拟合欠拟合及解决方案
1.一些概念训练误差(training error)指模型在训练数据集上表现出的误差泛化误差(generalization error)指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。机器学习模型应关注降低泛化误差。2.多项式拟合实验# %matplotlib inlineimport torchimport numpy as npimport...
2020-03-17 18:31:42
1185
1
原创 《On Positive-Unlabeled Classification in GAN 》学习笔记
论文摘要作者提出了一种新的GAN模型,区别于以往的GAN模型,新模型的判别器的目的不再是区分真实样本和判别器生成的样本,而是区分高质量图片样本和低质量的样本,其中高质量的样本就有可能来自生成器。以往模型的痛点在普通的GANs模型中,训练进度通常缺乏稳定性,并且生成的图像质量并不总是令人满意的。例如,DCGAN为生成器和鉴别器精心设计了神经体系结构,以缓解这些问题。Progressive GA...
2020-03-06 21:49:36
2608
原创 pytorch 学习笔记 part 13 GAN
%matplotlib inlineimport matplotlib.pyplot as pltfrom torch.utils.data import DataLoaderfrom torch import nnimport numpy as npfrom torch.autograd import Variableimport torch产生“真实”数据X=np.rando...
2020-02-25 17:56:40
148
原创 pytorch 学习笔记 part12 目标检测
目标检测和边界框%matplotlib inlinefrom PIL import Imageimport syssys.path.append('/home/input/')import d2lzh1981 as d2l# 展示用于目标检测的图d2l.set_figsize()img = Image.open('/home/input/img2083/img/catdog.jp...
2020-02-25 17:50:29
572
1
原创 pytorch 学习笔记 part11 批量归一化和残差网络
批量归一化从零实现import timeimport torchfrom torch import nn, optimimport torch.nn.functional as Fimport torchvisionimport syssys.path.append("/home/kesci/input/") import d2lzh1981 as d2ldevice = to...
2020-02-25 17:20:32
420
原创 pytorch 学习笔记 part 10 机器翻译和数据集
机器翻译和数据集import syssys.path.append('/home/kesci/input/d2l9528/')import collectionsimport d2limport zipfilefrom d2l.data.base import Vocabimport timeimport torchimport torch.nn as nnimport tor...
2020-02-18 12:10:04
778
原创 pytorch 学习笔记 part9 LeNet 模型
通过Sequential类来实现LeNet模型#importimport syssys.path.append("/home/kesci/input")import d2lzh1981 as d2limport torchimport torch.nn as nnimport torch.optim as optimimport time#netclass Flatten(t...
2020-02-17 10:56:37
227
原创 pytorch 学习笔记 part8 卷积神经网络基础
卷积层的实现主要参数:1.in_channels (python:int) – Number of channels in the input imag2.out_channels (python:int) – Number of channels produced by the convolution3.kernel_size (python:int or tuple) – Size o...
2020-02-17 10:46:23
328
原创 pytorch 学习笔记 part7 循环神经网络进阶
载入数据集import osos.listdir('/home/input')import numpy as npimport torchfrom torch import nn, optimimport torch.nn.functional as Fimport syssys.path.append("../input/")import d2l_jay9460 as d2l...
2020-02-16 22:34:57
257
原创 pytorch 学习笔记 part 6 循环神经网络基础
1.从零开始实现循环神经网络读入数据还是使用周杰伦的歌词作为语料import torchimport torch.nn as nnimport timeimport mathimport syssys.path.append("/home/input")import d2l_jay9460 as d2l(corpus_indices, char_to_idx, idx_to_c...
2020-02-16 22:20:21
462
原创 pytorch 学习笔记 part 5 语言模型
语言模型数据集采样方法读取数据集这里采用的是周杰伦的歌词作为样本with open('/home/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f: corpus_chars = f.read()print(len(corpus_chars))print(corpus_chars[: 40])corpus_chars = co...
2020-02-16 22:00:26
276
原创 pytorch学习笔记 part4 文本预处理
1.实现文本预处理读入文本选择一部英文小说,H. G. Well的Time Machine,学习实现文本预处理的具体过程。import collectionsimport redef read_time_machine(): with open('/home/input/timemachine7163/timemachine.txt', 'r') as f: l...
2020-02-16 21:43:42
322
原创 pytorch 学习笔记 part 3 多层感知机
1.多层感知机从零开始实现导入模块import torchimport numpy as npimport syssys.path.append("/home/kesci/input")import d2lzh1981 as d2lprint(torch.__version__)获取训练集batch_size = 256train_iter, test_iter = d2l....
2020-02-16 12:52:47
351
原创 pytorch 学习笔记 part 2 softmax回归
1.softmax从零开始的实现导入模块import torchimport torchvisionimport numpy as npimport syssys.path.append("/home/kesci/input")import d2lzh1981 as d2lprint(torch.__version__)print(torchvision.__version__...
2020-02-16 11:50:17
488
原创 pytorch 学习笔记 part 1线性回归
一、线性回归1.从零开始实现线性回归模型In[1]:# import packages and modules%matplotlib inlineimport torchfrom IPython import displayfrom matplotlib import pyplot as pltimport numpy as npimport randomprint(torc...
2020-02-14 11:16:11
411
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人