堆(heap)

本文详细介绍了Python的heapq模块,包括heappush、heappop、heapify等核心函数的用法,并展示了如何实现堆的合并、获取最大值和最小值、以及使用heapq.nlargest和heapq.nsmallest的功能。适合学习和理解堆数据结构在优先队列中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

堆(heap)
又被为优先队列(priority queue)。

python的heapq模块默认的是最小堆。堆数据结构最重要的特征是heap[0] 永远是最小的元素。

8个headq函数:

import heapq

将item压入堆heqp中。
list1 = [1, 3, 5, 2, 6, 8, 9, 3]
heapq.heappush(list1, 12)

从堆item弹出最小值。
list1 = [1, 3, 5, 2, 6, 8, 9, 3]
heapq1 = heapq.heappop(list1)

heapq.heapify(list):参数必须是list,此函数必须将list变成堆,实时操作。
list1 = [1, 3, 5, 2, 6, 8, 9, 3]
heapq1 = heapq.heapify(list1)

heappushpop(heap, item): heappush方法和heappop方法的合体,先heappush(heap, item),再heappop(heap)

heapreplace(heap, item): heappop方法和heappush方法的合体,先heappop(heap),再heappush(heap, item)

将多个堆进行合并
list1 = [1, 3, 5, 7]
list2 = [2, 4, 6, 8]
new_heapq = heapq.merge(list1, list2)

获取iterable中最大的n个值
list1 = [1, 3, 5, 7, 2, 4, 6, 8]
print(heapq.nlargest(2, list1))

获取iterable中最大的n个值
list1 = [1, 3, 5, 7, 2, 4, 6, 8]
print(heapq.nsmallest(2, list1))
 

参考

python模块之heapq模块 - 掘金

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WX Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值