目录
1.卷积核基本参数说明
pytorch进行图像卷积操作之前,需要把图像素格式进行分离,比如一个图像为rgb格式,把R,G,B取出来作为一个ndarray,前文讲过,在pytorch中进行图像转Tensor,大小变换,相关处理的库,基本都放在 from torchvision import transforms里面,对于把正常的图像转换为单独的RGB的ndarray,并且归一化,使用 transforms.ToTensor即可一次性完成转换。在训练图像相关模型的时候,主要是训练卷积核的参数,一般的3*3的卷积核结构如代码所示:
import cv2
import os
import numpy as np
import torch
import torchvision
from torchvision import transforms
from PIL import Image
from torch import nn
from matplotlib import pyplot as plt
from torchvision import transforms
#定义卷积核心,bias为False则不要偏置参数
#输入通道为3,输出通道为1,卷积核大小为3*3,偏置为真
cov = nn.Conv2d(3,1,3,bias=True)
print(cov.state_dict())
'''
OrderedDict([('weight', tensor([[[[ 0.1062, 0.0600, -0.0675],