1. 操作符分类
算数操作符:+ 、- 、* 、/ 、%
移位操作符:>> 、<<
位操作符:& 、| 、^
赋值操作符:= 、+= 、-= 、*= 、/= 、%= 、<<= 、>>= 、&= 、|= 、^=
单目操作符:! 、++ 、-- 、& 、* 、+ 、- 、~ 、sizeof 、(类型)
关系操作符:> 、>= 、< 、<= 、== 、!=
逻辑操作符:&& 、||
条件操作符: ? :
逗号表达式:,
下标引用:[ ]
函数调用:( )
结构成员访问:. 、->
我们已经接触过算术操作符、赋值操作符、逻辑操作符、条件操作符和部分的单目操作符,现在学习另一部分,操作符中有一些操作符和二进制有关系,我们先了解一下二进制的和进制转换的知识。
2. 二进制与进制转换
我们知道常见的进制有 2 进制、 8 进制、 10 进制、 16 进制 ,那这些进制是什么意思呢?
其实2进制、8进制、10进制、16进制是数值的不同表示形式而已。
比如:数值15的各种进制的表示形式:
二进制:1111
八进制:17
十进制:15
十六进制:F
//16进制的数值之前写:0x
//8进制的数值之前写:0
这里我们重点介绍一下二进制:
拿我们生活中常见的十进制举例:
十进制满10进1,每一位的数字都有0~9组成
那么将规律类推到二进制中:
二进制中满2进1,每一位数字由0~1组成
2.1 二进制与十进制之间的转换
以十进制为例,十进制的每一位数字都有权重,10 进制的数字从右向左是个位、十位、百位...,分别每一位的权重是10的0次 ,10的1次,10的2次…
那么与之类似,2进制的每一位的权重,从右向左是: 2的0次,2的1次,2的2次...
因此二进制中的 1101 转换为十进制就是:
1 * 2^(0) + 1* 2^(1) + 0* 2^(2) + 1 * 2^(3) = 11
那么,十进制的数字如何转换为二进制数字呢?
这时,我们就需要使用取余法,让十进制的数字不断除以2并保留余数,直到商为零,最后将取余得到的各位倒序排序。
例如,将十进制数字的125转换为二进制数字就是:
125 / 2 = 62……1
62 / 2 = 31……0
31 / 2 = 15……1
15 / 2 = 7……1
7 / 2 = 3……1
3 / 2 = 1……1
1 / 2 = 0……1
//倒叙排序
1111101
将得到结果进行验算,发现结果恰好是125。
2.2 二进制转换为八进制与十六进制
8进制的数字每一位是0~7的,0~7的数字,各自写成2进制,最多有3个2进制位就足够了,比如7的二进制是111,所以在2进制转8进制数的时候,从2进制序列中右边低位开始向左每3个2进制位会换算一个8进制位,剩余不够3个2进制位的直接换算。
如:2进制的01101011,换成8进制:0153,0开头的数字,会被当做8进制。
二进制: 01 101 011
八进制: 1 5 3
16进制的数字每一位是0~9,a ~ f的,0~9,a ~ f的数字,各自写成2进制,最多有4个2进制位就足够了,比如f的二进制是1111,所以在2进制转16进制数的时候,从2进制序列中右边低位开始向左每4个2进制位会换算一个16进制位,剩余不够4个二进制位的直接换算。
如:2进制的01101011,换成16进制:0x6b,16进制表示的时候前面加0x
二进制: 0110 1011
十六进制: 6 b
3. 原码、反码、补码
整数的2进制表示方法有三种,即原码、反码和补码
有符号整数的三种表示方法均有符号位和数值位两部分,2进制序列中,最高位的1位是被当做符号 位,剩余的都是数值位。
符号位都是用0表示“正”,用1表示“负”。
正整数的原、反、补码都相同。 负整数的三种表示方法各不相同。
原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
补码得到原码也是可以使用:取反,+1的操作。
对于整形来说:数据存放内存中其实存放的是补码
这是为什么呢?
在计算机系统中,数值⼀律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统⼀处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
4. 移位操作符
<< 左移操作符
>> 右移操作符
注: 移位操作符的操作数只能是整数。
4.1 左移操作符
移位规则:左边抛弃、右边补0
#include <stdio.h>
int main()
{
int num = 10;
int n = num<<1;
printf("n = %d\n", n);
printf("num = %d\n", num);
return 0;
}
//输出结果
n = 20
num = 10
//左移前
00000000000000000000000000001010 = 10
//左移后
00000000000000000000000000010100 = 20
我们发现,左移操作后,数值变为了原来的2倍,正好对应每一位向左移动一位,每一位权重提升一次。
4.2 右移操作符
移位规则:
首先右移运算分两种:
1. 逻辑右移:左边用0填充,右边丢弃
2. 算术右移:左边用原该值的符号位填充,右边丢弃
具体是哪种运算由编译器决定。
#include <stdio.h>
int main()
{
int num = 10;
int n = num>>1;
printf("n = %d\n", n);
printf("num = %d\n", num);
return 0;
}
//输出结果
n = 5
num = 10
//右移前
00000000000000000000000000001010 = 10
//右移后
00000000000000000000000000000101 = 10
与左移操作类似,右移操作后,数值变为了原来的一半,正好对应每一位向右移动一位,每一位权重降低一次。
注:对于移位运算符,不要移动负数位,这个是标准未定义的。
int num = 10;
num>>-1;//程序报错
5. 位操作符
位操作符有:
按位与 &
按位或 |
按位异或 ^
按位取反 ~
注: 他们的操作数必须是整数。
#include <stdio.h>
int main()
{
int num1 = -3;
int num2 = 5;
printf("%d\n", num1 & num2);
printf("%d\n", num1 | num2);
printf("%d\n", num1 ^ num2);
printf("%d\n", ~0);
return 0;
}
//输出结果
5
-3
-8
-1
解析:
10000000000000000000000000000011 = -3 原码
11111111111111111111111111111100 反码
11111111111111111111111111111101 补码
00000000000000000000000000000101 = 5 正数补码与原码相同
00000000000000000000000000000000 = 0
按位与操作:当两个二进制数对应位都为1时,结果位才为1,否则为0
11111111111111111111111111111101 = -3
00000000000000000000000000000101 = 5
-3 & 5 = 00000000000000000000000000000101 = 5
按位或操作:当两个二进制数对应位至少有一个为1时,结果为1,否则为0
11111111111111111111111111111101 = -3
00000000000000000000000000000101 = 5
-3 | 5 = 11111111111111111111111111111101 补码
00000000000000000000000000000010 反码
10000000000000000000000000000011 = -3 原码
按位异或操作:当两个二进制数对应位不同时,结果位为1;相同为1
11111111111111111111111111111101 = -3
00000000000000000000000000000101 = 5
-3 ^ 5 = 11111111111111111111111111111000 补码
10000000000000000000000000000111 反码
10000000000000000000000000001000 = -8 原码
按位取反操作:二进制数字每一位为1时结果位为0,否则为1
0 = 00000000000000000000000000000000
~0 = 11111111111111111111111111111111 补码
10000000000000000000000000000000 反码
10000000000000000000000000000001 = -1 原码
计算机计算时使用补码,输出时通过原码还原出补码对应的数值。
这里引入一道有意思的题目:
在不创建第三个临时变量的情况下交换两个变量的值。
正常情况下我们会写出下面的代码实现题目要求:
#include <stdio.h>
int main()
{
int a = 1;
int b = 2;
printf("交换前:a = %d b = %d\n",a,b);
a = a + b;
b = a - b;
a = a - b;
printf("交换后:a = %d b = %d\n",a,b);
return 0;
}
交换前:a = 1 b = 2
交换后:a = 2 b = 1
将 a + b赋值给a,然后将a - b赋值给b,此时b中就是原本 a 的值,最后将a - b赋值给 a ,此时,a 中就是原本 b 的值,实现了两个变量的值的交换。
但是这个代码的有一点缺陷就是:int 类型能表示的值是有范围的,如果两个变量的值过大,在第一步将 a + b赋值给 a 的操作中就有可能导致数值超出范围,那也没有更好的方法呢?
我们回归一下上面的位操作符中的按位异或操作符 ^ ,由于按位异或的执行逻辑是两个二进制对应位相同时为0,不同为1,那么, a ^ a的值肯定就是0了,那a ^ 0的值呢?0的二进制每一位都为0,也就是说,位相同即都为0是为0;位不同即为1时,结果为1。那么相当于没有改变原数值,结果为a,知道了这个规律,我们就可以通过下面的代码实现题目要求:
#include <stdio.h>
int main()
{
int a = 1;
int b = 2;
printf("交换前:a = %d b = %d\n",a,b);
a = a ^ b;
b = a ^ b;
a = a ^ b;
printf("交换后:a = %d b = %d\n",a,b);
return 0;
}
交换前:a = 1 b = 2
交换后:a = 2 b = 1
将a ^ b赋值给a,此时结果不重要;接着,将 a ^ b赋值给b,那就是 a ^ b ^ a,因为按位异或运算的顺序是不会影响结果的,所以就相当于 a ^ b ^ b = 0 ^ a = a;最后将 a ^ b赋值给a,即 a ^ b ^ a = a ^ a ^ b = 0 ^ b = b,实现两个变量的值的交换。
这样就不需要担心变量的值可能超出范围。
不过正常情况下,通过创建变量来实现两个变量值的交换效率更快,并且代码的可读性也更高。
5.1 求一个二进制数中1的个数
题目:
编写代码实现:求一个整数存储在内存中的二进制中1的个数。
看到题目,我们很容易就联想到上面十进制转换二进制的方法,用代码实现就是如下形式:
#include <stdio.h>
int main()
{
int a,count = 0;
scanf("%d",&a);
int n = a;
while(n)
{
if(n % 2 == 1)
count++;
n = n / 2;
}
printf("%d的二进制储存形式中有%d个1",a,count);
return 0;
}
但是这个代码有个缺陷,那就是无法处理负数。
所以有没有其他方法呢?
我们回想起上面的左移操作符,如果我们让数字的二进制位每左移一次让其原数按位与运算,如果结果不为0,就记1;否则为0。用代码实现就是如下形式:
#include <stdio.h>
int main()
{
int a,i,count = 0;
scanf("%d",&a);
for(i = 0;i < 32;i++)
{
if( a & (a << i))
count++;
}
printf("%d的二进制储存形式中有%d个1",a,count);
return 0;
}
这个代码就是兼顾了处理负数的情况,但是要想处理一个数就必定会循环32次,有没有方法减少循环次数呢?
#include <stdio.h>
int main()
{
int a,count = 0;
scanf("%d",&a);
int n = a;
while(n)
{
count++;
n = n & (n - 1);
}
printf("%d的二进制储存形式中有%d个1",a,count);
return 0;
}
让n值作为循环条件,因为n不为0时,二进制形式至少有一个1;将n & (n - 1)赋值给n。这样,让n值减去1,如果此位为1,就只会产生一个零;否则就向前借数,中间部分的1与原本的0在按位与操作后就全部变为0;接着循环此操作,直到n为0,说明n中没有1了,循环结束。每一次循环都能消去二进制中的一个1,提高了循环效率。
5.2 让二进制指定位变为1或0
题目:
编写代码将13⼆进制序列的第5位修改为1,然后再改回0。
很明显,这里需要用到位操作符。那么应该使用哪一种呢?
很明显,如果是将0改为1,用&是不可能实现的;~ 会将全部位改变,不能使用。那么就剩下 | 和 ^ 了。但是 ^ 是在相同时改为0,不同则为1,那么就有可能出现错改的情况。现在,我们就剩下 |了,那现在的问题是,让什么数与指定值进行按位或操作呢?
既然是将0改为1,那需要修改的那一位上我们需要是1,其他位不能修改,需要为0;那需要我们在修改时,根据位数来计算值再使用?不需要,我们只需要对1使用<<就可以实现要求。让1移动到指定位,其余部分都用0补充。
相应的,要修改回0改怎么操作?在保证不修改错误的情况下让1变为0,那我们就只能选择&,那使用&的话,将1修改位0需要对应位为0;不能影响其他位,所以剩下所有位需要为1。我们发现,这个形式不正好与我们进行了左移操作后的1相反么,只需要使用 ~ 就可以实现。
因此,我们就可以得到如下代码:
#include <stdio.h>
int main()
{
int a = 13;
a = a | (1<<4);
printf("a = %d\n", a);
a = a & ~(1<<4);
printf("a = %d\n", a);
return 0;
}
a = 29
a = 13
13 = 00000000000000000000000000001101
29 = 00000000000000000000000000011101
可以看到,结果符合我们预期。