将模型保存到kaggle中的model中

🔑 步骤 1:在 Kaggle 创建一个模型版本

你可以通过代码直接上传模型到 Kaggle 的 Model 页面,这样即使关闭 Notebook,模型也不会丢失。


🧪 示例:用 kaggle 命令行 API 保存模型

✅ 第一步:安装 kaggle API


!pip install kaggle


✅ 第二步:配置 kaggle.json

你需要先下载你的 Kaggle API Token,然后上传到 Notebook(通常会自动上传到 /root/.kaggle/kaggle.json)。

如果你没看到,可以手动上传并执行:


import os



os.makedirs('/root/.kaggle', exist_ok=True)

os.system('cp kaggle.json /root/.kaggle/')

os.system('chmod 600 /root/.kaggle/kaggle.json')


✅ 第三步:保存你的模型文件(如 .pkl, .h5, .pt, .joblib

假设你已经训练好了模型,并保存为 model.pkl


import joblib

# 或者用 pickle、torch.save 等方式保存模型

joblib.dump(model, 'model.pkl')


✅ 第四步:创建模型元数据并上传到 Kaggle Models

创建一个 model-metadata.json 文件,内容如下:


{

  "title": "My Awesome Model",

  "overview": "This is a description of my model.",

  "licenseName": "Apache 2.0"

}

然后执行命令上传:


!kaggle models init -m model-metadata.json

!kaggle models version -m model-metadata.json -p . -q

这会把当前目录下的所有文件(包括 model.pkl)打包上传到 Kaggle Model 页面。


✅ 第五步:查看你的模型

上传成功后,你可以在 Kaggle 的 Models 页面 找到你的模型,以后可以随时调用。


📦 下次怎么调用?

当你下次打开一个新的 Notebook,可以通过以下方式加载模型:

方法一:从 Kaggle Model 页面添加模型

点击右上角的 “Add Data” > “Add Model”,搜索你的模型并添加进来,它会被放在 /kaggle/input/your-model-name/ 路径中。

然后你可以加载模型:


import joblib

model = joblib.load('/kaggle/input/your-model-name/model.pkl')


🎯 总结一下保存流程:

步骤操作
1安装 kaggle API 并配置 token
2保存模型文件(如 model.pkl)
3创建 model-metadata.json
4使用 kaggle models version 命令上传
5模型出现在 Kaggle Models 页面,可永久保存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值