数据处理和统计分析——05 Pandas数据分析

1 计算常用统计值

  • 加载数据:

    在这里插入图片描述

  • 查看数据字段说明:

    在这里插入图片描述

  • 查看数据行数和列数:

    在这里插入图片描述

  • 对DataFrame进行统计分析,得到计数(count)、平均值(mean)、标准差(std)、最小值(min):

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

  • 可以通过info()方法了解不同字段的条目数量,数据类型,是否缺失及内存占用情况

    在这里插入图片描述

2 常用排序方法

2.1 例:找到小成本高口碑电影

  • nlargest(n, '列名'):获取某一列取值最大的前n条数据

  • nsmallest(n, '列名'):获取某一列取值最小的前n条数据

    在这里插入图片描述

2.2 例:找到每年imdb评分最高的电影

在这里插入图片描述

  • sort_values:根据指定列的值对 DataFrame 进行排序,支持多列排序并可分别指定升序或降序;

    在这里插入图片描述

  • drop_duplicates:删除 DataFrame 中指定列的重复行,可选择保留第一个或最后一个出现的记录;

    在这里插入图片描述

2.3 例:提取出每年,每种电影分级中预算少的电影

在这里插入图片描述

3 租房数据分析练习

3.1 加载数据&预处理

在这里插入图片描述

3.2 查看数据

  • house_data.head():查看数据前5行

    在这里插入图片描述

  • house_data.info():查看列数据分布

    在这里插入图片描述

  • house_data.describe():查看列统计指标

    在这里插入图片描述

  • house_data.shape:查看数据形状

    在这里插入图片描述

3.3 简单数据分析

  • 找到租金最低,和租金最高的房子

    在这里插入图片描述

  • 找到最近新上的10套房源

    在这里插入图片描述

  • 查看所有更新时间

    在这里插入图片描述

  • 看房人数

    在这里插入图片描述

  • 不同看房人数的房源数量

    在这里插入图片描述

  • 画图:

    在这里插入图片描述

  • 房租价格分布

    在这里插入图片描述

  • 统计最受欢迎的朝向

    在这里插入图片描述

  • 房型在各个区域的分布情况

    # 设置正常显示汉字和负号
    import matplotlib.pyplot as plt
    plt.rcParams['font.sans-serif'] = ['SimHei'] # 正常显示汉字
    plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
    

    在这里插入图片描述

  • 最受欢迎的房型

    在这里插入图片描述

  • 不同房型的平均租金

    在这里插入图片描述

  • 热门小区

    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失散13

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值