OpenAI Embeddings 文本嵌入模型

embeddings是什么?

OpenAI 的文本嵌入模型可以计算文本字符串的特征向量,通过向量计算字符串之间的语义相关性。嵌入通常用于:

  • 搜索(其中搜索结果按与查询字符串的相关性排序)
  • 聚类(其中文本字符串按相似性分组)
  • 推荐(其中推荐具相似的内容)
  • 异常检测(识别具有很少相关性的异常值)
  • 多样性测量(分析相似性分布)
  • 分类(按它们最相似的标签对文本字符串进行分类)

embeddings模型计算出来的向量数据是浮点数数组。两个向量之间的距离可以表达它们之间的相关性。距离越近表明相关性越高,距离越远表明相关性越低。

  • 提示:目前业界在文本向量计算这块,OpenAI的embedding模型效果是比较好的,缺点就是要花钱,不过目前价格还是很便宜,目前大概$0.0001/1K tokens。

如何使用embeddings模型?

使用openai的嵌入模型很简单,一个接口调用就可以搞定,目前OpenAI最新的嵌入模型是ext-embedding-ada-002

HTTP API调用例子:

curl https://api.openai.com/v1/embeddings \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -d '{
    "input"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yc Chan 2

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值