[FFT]2021牛客暑假训练营 Hash Function

本文介绍了一种利用快速傅里叶变换(FFT)解决数论问题的方法。通过输入一系列整数,代码首先初始化复数数组并进行FFT运算,然后检查每个结果,最终找到满足特定条件的数。这是一个涉及数值计算和算法应用的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

添加链接描述

思路

刚学 先照着打了一遍,明天来补~

代码

#include<bits/stdc++.h>
using namespace std;
typedef complex<double> CP;
const int lim = 1<<21;
double PI = acos(-1.0);
CP a[lim],b[lim];
bool vis[lim];
const int P = 500001;
void FFT(CP *x,int lim,int inv) // 板子
{
   int bit = 1,m;
   CP stand,now,temp;
   while((1<<bit) < lim) ++bit;
   for (int i = 0; i < lim; ++i)
   {
       m = 0;
       for (int j = 0; j < bit; ++j)
           if(i & (1<<j)) m |= (1<<(bit-j-1));
       if(i < m) swap(x[m],x[i]);
   }
   for (int len = 2; len <= lim; len <<= 1)
   {
       m = len >> 1;
       stand = CP(cos(2*PI/len),inv*sin(2*PI/len));
       for (CP *p = x; p != x+lim; p += len)
       {
           now = CP(1,0);
           for (int i = 0; i < m; ++i,now*=stand)
           {
               temp = now * p[i+m];
               p[i+m] = p[i] - temp;
               p[i] = p[i] + temp;
           }
       }
   }
   if(inv == -1)
       for (int i = 0; i < lim; ++i)
           x[i].real(x[i].real()/lim);
}
 
bool check(int x)
{
   for (int i = x; i <= P; i += x)
   {
       if (vis[i] == 1) return 0;
   }
   return 1;
}
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++){
		int x;
		cin>>x;
		a[x].real(1);
		b[P-x].real(1);//负数要偏移,正数不用 
	}
	int num = 1<<20;
	FFT(a,num,1);
	FFT(b,num,1);
	for(int i=0;i<num;i++) a[i]=a[i]*b[i];//注意从0开始 遍历的是数 
	FFT(a,num,-1);
	for(int i=0;i<num;i++){
		int cal = (int)floor(a[i].real()+0.5);
		if(cal>0) vis[abs(i-P)] = 1;
	}
	for(int i=n;i<=P;i++){
		if(check(i)){
			cout<<i<<endl;
			return 0;
		}
	} 
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值