目标跟踪KCF学习笔记-公式推导

这篇博客详细介绍了目标跟踪中KCF算法的公式推导过程,从线性回归的基本原理开始,逐步解析KCF的核心计算步骤,揭示了KCF在目标检测中的应用与优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 脊回归
设训练样本集为这里写图片描述,样本xi为列向量,其线性回归函数这里写图片描述这里写图片描述是列向量表示权重系数,可通过最小二乘法求解:


这里写图片描述

其中 这里写图片描述为正则化参数,防止发生过拟合,写成矩阵形式:

这里写图片描述

其中 这里写图片描述的每一行代表一个样本, 这里写图片描述为列向量,每一个元素对应一个样本的标签,可求得线性回归的最小二乘方法解为:

这里写图片描述

接下来为公式的推导过程:

这里写图片描述

在傅立叶域中有, 这里写图片描述,进一步得到:

这里写图片描述

2. 循环位移&循环矩阵
KCF中所有的训练样本都是通过对目标样本进行循环移动获得,向量的循环可有排列矩阵得到,
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值