程序员的线性代数读书笔记——第二章

目录

 

问题设定:逆问题

良性问题(可逆矩阵)

初等变换

恶性问题

对矩阵的恶劣程度进行描述有两个量:核与像

可逆<->良性 可逆性的总结

针对恶性问题的对策


 

问题设定:逆问题

现实中的很多问题可以表示为,由一个原因x,经过某个特定的系统A,最后得到预测结果y。由结果y去推测原因x的问题称为逆问题。在实际问题中,往往需要考虑噪声,y=Ax+(噪声)。

良性问题(可逆矩阵)

设x和y是具有想同维度的向量,A是方阵(非方阵没有逆矩阵的定义),如果A存在逆矩阵,则称其是可逆矩阵(也有称为正则矩阵,非奇异矩阵),否则称为奇异矩阵

初等变换

求解线性方程组或者矩阵求逆的时候我们经常是通过消元法或者gauss-jordan的方法,这些笔算的步骤都可以归结为一下三个操作

  • 将某行乘以c(c!=0)
  • 将某行的c倍加到另一行上
  • 交换两行

这三种操作都可以用“乘上一个矩阵”的形式表示出来,比如需要将3*4的矩阵A的第三行乘以5,就相当于矩阵A左乘”将I的(3,3)元素替换成5得到的矩阵Q3(5)“

Q3(5)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值