一、二叉树中序遍历的非递归算法的关键和思路
1、二叉树中序遍历的非递归算法的关键:在中序遍历过某结点的整个左子树后,如何找到该结点的根以及右子树。
2、基本思路:
基本思路:(1)建立一个栈(2)根结点进栈,遍历左子树(3)根结点出栈,输出根结点,遍历右子树。
3、算法描述
Status InOrderTraverse (BiTree T){
BiTree p;InitStack(S);p=T;
while(p || !StackEmpty(S)){
if(p) {Push(S,p); p = p->lchild;}
else {Pop(S,q);printf( "%c",q->data);
p=q->rchild;}
}
return OK;
}
二、二叉树的层次遍历
1、定义:对于一颗二叉树,从根结点开始,按从上到下、从左到右的顺序访问每一个结点。
每一个结点仅仅访问一次。
2、算法设计思路:使用一个队列
①将根结点进队;
②队不空时循环:从队列中出列一个结点*p,访问它;
➊若它有左孩子结点,将左孩子结点进队。
❷若它有右孩子结点,将右孩子结点进队。
3、二叉树的层次遍历算法描述
/**
*typedef struct{ //使用的队列类型定义
*BTNode data[MaxSize]; //存放队中元素
*int front, rear; //队头和队尾指针
*} SqQueue; //顺序循环队列类型
*/
void LevelOrder(BTNode *b) {
BTNode *p;SqQueue *qu;
InitQueue(qu); //初始化队列
enQueue(qu,b); //根结点指针进入队列
while (!QueueEmpty(qu)) { //队不为空, 则循环
deQueue(qu,p); //出队结点p
printf("%C",p->data); //访问结点p
if (p->lchild!= NULL) enQueue(qu,p->lchild); //有左孩子时将其进队
if (p->rchild!=NULL) enQueue(qu, p->rchild);} //有右孩子时将其进队
}