高阶排序
测试快排,是未优化的快排
1、快速排序
冒泡排序的升级算法
每次选择一个基准数,把小于基准数的放到基准数的左边,把大于基准数的放到基准数的右边,采用 “ 分治算法 ”处理剩余元素,直到整个序列变为有序序列。
最好和平均的复杂度:
时间复杂度:O(n)*O(logn) = O(nlogn)
空间复杂度:O(logn) 递归的深度所占用的栈内存
最坏的情况(有序的元素):元素有几个,其深度就有几个,此时时间复杂度为 O(n^2) , 空间复杂度为O(n)
思路
实例理解
对于数组arr[] = {46,8,76,10,38,7,68,32,65,53};
进行快速排序。
循环的条件 L< R
1、选取基准数 val = arr[L]; // val = 46
2、从R开始往前找第一个 <val 的数字,放到L的地方。(这里不用担心数据被覆盖,因为val已经将值保存), L++ 。
3、从L开始,往后找第一个 >val 的数字,放到R的地方, R-- 。
4、重复上面的过程,直到循环结束(循环条件为 L<R)
运行到循环结束
此时,将val的值写入 arr[L] 最终一趟下来的结果为
一趟下来,此时,arr[L] 左边的值全部小于val–46,左边全部大于val–46。
此时,继续对两边的数据继续快排。
最终结果为:
代码实现
//快排分割处理函数
int Partation(int arr[], int left, int right)
{
//记录基准数
int val = arr[left];
//进行一次快排分割处理 O(n)*O(logn) = O(nlogn) 空间复杂度:O(logn) 递归的深度所占用的栈内存
while (left < right)
{
while (left < right && arr[right] > val)
{
right--;
}
if (left < right)
{
arr[left] = arr[right];
left++;
}
while (left < right && arr[left] < val)
{
left++;
}
if (left < right)
{
arr[right] = arr[left];
right--;
}
}
//left == right 的位置,就是放基准数的位置
arr[left] = val;
return left;
}
//快排的递归接口
void QuickSort(int arr[], int begin, int end)
{
if (begin >= end)//快排递归结束的条件
{
return;
}
//在[begin,end]区间的元素进行一次快排分割处理
int pos = Partation(arr,begin,end);
//对基准数的左边和右边的序列,再分别进行快排
QuickSort(arr,begin,pos-1);
QuickSort(arr,pos+1,end);
}
//快速排序
void QuickSort(int arr[], int size)//为了区别自带的快速排序函数
{
return QuickSort(arr,0,size-1);
}
int main()
{
int arr[10];
srand(time(NULL));
for (int i = 0; i < 10; i++)
{
arr[i] = rand() % 100 + 1;
}
for (int v : arr)
{
cout << v << " ";
}
cout << endl;
QuickSort(arr, sizeof(arr) / sizeof(arr[0]));
for (int v : arr)
{
cout << v << " ";
}
cout << endl;
return 0;
}
测试
快速排序的算法优化、效率提升
1)对于小段趋于有序的序列采用插入排序
2)三数取中法。旨在挑选合适的基准数,防止快排退化成冒泡排序。
3)随机数法
特点
快速排序是个不稳定的排序算法
当数据趋于有序,或者已经有序了,快速排序的效率是很差的,但是快速排序的效率是最好的。
快排算法优化一:
1、随着快速排序算法执行,数据越来越趋于有序,在一定范围内,可以采用插入排序代替快速排序
相关代码:
//针对快排优化设计的插入排序
void InsertSort(int arr[], int begin,int end)
{
for (int i = begin; i <= end; i++)//O(n)
{
int val = arr[i];
int j = i - 1;
for (; j >= 0; j--) //O(n)
{
if (arr[j] <= val)
{
break;
}
arr[j + 1] = arr[j];
}
//val -> j+1
arr[j + 1] = val;
}
}
void QuickSort(int arr[], int begin, int end)
{
if (begin >= end)//快排递归结束的条件
{
return;
}
//优化一:当[begin,end] 序列的元素个数小到指定数量,采用插入排序
if (end - begin <= 50)//这里的范围视情况而定
{
InsertSort(arr,begin,end);
return;
}
//在[begin,end]区间的元素进行一次快排分割处理
int pos = Partation(arr,begin,end);
//对基准数的左边和右边的序列,再分别进行快排
QuickSort(arr,begin,pos-1);
QuickSort(arr,pos+1,end);
}
快排算法优化二:选择基准数的优化,采用“三数取中”法
采用“三数取中”法,找合适的基准数。
mid = (L+R)/2;
2、归并排序
也采用 “ 分治思想 ”,先进行序列划分,再进行元素的有序合并。
时间复杂度:O(n logn)
空间复杂度:O(logn)