c++数据结构算法复习基础--11--高级排序算法-快速排序-归并排序-堆排序

高阶排序

在这里插入图片描述
在这里插入图片描述
测试快排,是未优化的快排
在这里插入图片描述

1、快速排序

冒泡排序的升级算法

每次选择一个基准数,把小于基准数的放到基准数的左边,把大于基准数的放到基准数的右边,采用 “ 分治算法 ”处理剩余元素,直到整个序列变为有序序列。

最好和平均的复杂度:
时间复杂度:O(n)*O(logn) = O(nlogn)
空间复杂度:O(logn) 递归的深度所占用的栈内存

最坏的情况(有序的元素):元素有几个,其深度就有几个,此时时间复杂度为 O(n^2) , 空间复杂度为O(n)
在这里插入图片描述

思路

在这里插入图片描述

实例理解

对于数组arr[] = {46,8,76,10,38,7,68,32,65,53};进行快速排序。
在这里插入图片描述
循环的条件 L< R
1、选取基准数 val = arr[L]; // val = 46
2、从R开始往前找第一个 <val 的数字,放到L的地方。(这里不用担心数据被覆盖,因为val已经将值保存), L++ 。
在这里插入图片描述在这里插入图片描述
3、从L开始,往后找第一个 >val 的数字,放到R的地方, R-- 。在这里插入图片描述
4、重复上面的过程,直到循环结束(循环条件为 L<R)在这里插入图片描述
运行到循环结束在这里插入图片描述
此时,将val的值写入 arr[L] 最终一趟下来的结果为在这里插入图片描述

一趟下来,此时,arr[L] 左边的值全部小于val–46,左边全部大于val–46。
此时,继续对两边的数据继续快排。
在这里插入图片描述
最终结果为:
在这里插入图片描述

代码实现


//快排分割处理函数
int Partation(int arr[], int left, int right)
{
   
   
	//记录基准数
	int val = arr[left];

	//进行一次快排分割处理   O(n)*O(logn) = O(nlogn)  空间复杂度:O(logn) 递归的深度所占用的栈内存
	while (left < right)
	{
   
   
		while (left < right && arr[right] > val)
		{
   
   
			right--;
		}
		if (left < right)
		{
   
   
			arr[left] = arr[right];
			left++;
		}
		while (left < right && arr[left] < val)
		{
   
   
			left++;
		}
		if (left < right)
		{
   
   
			arr[right] = arr[left];
			right--;
		}
	}

	//left == right   的位置,就是放基准数的位置
	arr[left] = val;
	return left;
}

//快排的递归接口
void QuickSort(int arr[], int begin, int end)
{
   
   
	if (begin >= end)//快排递归结束的条件
	{
   
   
		return;
	}
	//在[begin,end]区间的元素进行一次快排分割处理
	int pos = Partation(arr,begin,end);

	//对基准数的左边和右边的序列,再分别进行快排
	QuickSort(arr,begin,pos-1);
	QuickSort(arr,pos+1,end);

}

//快速排序
void QuickSort(int arr[], int size)//为了区别自带的快速排序函数
{
   
   
	return QuickSort(arr,0,size-1);
}

int main()
{
   
   
	int arr[10];
	srand(time(NULL));

	for (int i = 0; i < 10; i++)
	{
   
   
		arr[i] = rand() % 100 + 1;
	}

	for (int v : arr)
	{
   
   
		cout << v << "  ";
	}
	cout << endl;

	QuickSort(arr, sizeof(arr) / sizeof(arr[0]));

	for (int v : arr)
	{
   
   
		cout << v << "  ";
	}
	cout << endl;

	return 0;
}

测试

在这里插入图片描述

快速排序的算法优化、效率提升

1)对于小段趋于有序的序列采用插入排序
2)三数取中法。旨在挑选合适的基准数,防止快排退化成冒泡排序。
3)随机数法

特点

快速排序是个不稳定的排序算法

当数据趋于有序,或者已经有序了,快速排序的效率是很差的,但是快速排序的效率是最好的。

快排算法优化一:

1、随着快速排序算法执行,数据越来越趋于有序,在一定范围内,可以采用插入排序代替快速排序
相关代码

//针对快排优化设计的插入排序
void InsertSort(int arr[], int begin,int end)
{
   
   
	for (int i = begin; i <= end; i++)//O(n)
	{
   
   
		int val = arr[i];
		int j = i - 1;
		for (; j >= 0; j--) //O(n)
		{
   
   
			if (arr[j] <= val)
			{
   
   
				break;
			}
			arr[j + 1] = arr[j];
		}
		//val -> j+1
		arr[j + 1] = val;
	}
}
void QuickSort(int arr[], int begin, int end)
{
   
   
	if (begin >= end)//快排递归结束的条件
	{
   
   
		return;
	}

	//优化一:当[begin,end] 序列的元素个数小到指定数量,采用插入排序
	if (end - begin <= 50)//这里的范围视情况而定
	{
   
   
		InsertSort(arr,begin,end);
		return;
	}

	//在[begin,end]区间的元素进行一次快排分割处理
	int pos = Partation(arr,begin,end);

	//对基准数的左边和右边的序列,再分别进行快排
	QuickSort(arr,begin,pos-1);
	QuickSort(arr,pos+1,end);

}

快排算法优化二:选择基准数的优化,采用“三数取中”法

采用“三数取中”法,找合适的基准数。

mid = (L+R)/2;

2、归并排序

也采用 “ 分治思想 ”,先进行序列划分,再进行元素的有序合并。
时间复杂度:O(n logn)
空间复杂度:O(logn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值