自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(61)
  • 收藏
  • 关注

原创 【数据集】【YOLO】【目标检测】yolo数据集,yolo目标检测毕业设计,yolo目标检测算法详细实战训练步骤!

【数据集】【YOLO】【VOC】目标检测数据集,yolo目标检测毕业设计,yolo目标检测算法详细实战训练步骤!博主自己整理的数据集,包括YOLO格式数据集和Pascal VOC格式数据集,含图像原文件和标注文件,几百张到几千张不等,含有国内外图片数据。针对目标检测,YOLO系列模型训练,分类训练等。目标检测算法集研发,含有目标检测yolo完整代码,QT界面完整代码。yolo目标检测毕业设计,完整标注数据集+项目代码。如需要其他数据集可留言帮忙查找,目前完整数据集目录如下文所示!

2024-11-07 17:18:58 18273 9

原创 网爬数据脚本,python实现网站数据爬取。

网爬数据脚本,python实现网站数据爬取。支持百度、谷歌等网站。

2025-07-04 17:30:54 224

原创 【数据集】【YOLO】【目标检测】水面垂钓识别数据集 1813 张,YOLO钓鱼识别算法实战训练教程,yolo垂钓识别毕业设计。

【数据集】【YOLO】【目标检测】水面垂钓识别数据集 1813 张,YOLO钓鱼识别算法实战训练教程,yolo垂钓识别毕业设计,包含YOLO TXT/VOC XML格式标注。数据集中包含 1 种分类,具体分类为:names: ['fishing'],表示垂钓。检测场景为河岸、湖边、海岸线等,可以应用于水面生态环境保护、非法垂钓智能监测、河道管理等。基于QT的yolo可视化界面实战详细步骤。

2025-07-04 17:22:17 1579

原创 【数据集】【YOLO】【目标检测】手势检测数据集 7335 张,YOLO人体手势检测算法实战训练教程,yolo手势识别毕业设计。

【数据集】【YOLO】【目标检测】手势检测数据集 7335 张,YOLO人体手势检测算法实战训练教程,yolo手势识别毕业设计,包含YOLO/VOC格式标注。数据集中包含 3 种分类,具体分类为:names: ['Paper', 'Rock', 'Scissors'],为掌,拳,剪刀手。检测场景为虚拟现实、智能家居、车载系统等场景,可以应用于VR/AR的沉浸式体验、智能家居的非接触控制等。基于QT的yolo可视化界面实战详细步骤。

2025-07-04 12:05:56 1178

原创 【目标检测】YOLO的TXT格式转Pascal的XML格式,数据集TXT标注文件转XML标注文件

【目标检测】YOLO的TXT格式转Pascal的XML格式,数据集TXT标注文件转XML标注文件XML(voc)转TXT(yolo)如果你的任务需要与VOC兼容的工具或数据集交互,转换就非常必要。否则,如果仅使用YOLO系列模型(如YOLOv5/v8),可以直接使用YOLO格式,无需转换。

2025-07-03 12:08:00 318

原创 【数据集】【YOLO】【目标检测】无人机检测数据集 7261 张,YOLO无人机识别算法实战训练教程,yolo无人机检测毕业设计。

【数据集】【YOLO】【目标检测】无人机检测数据集 7261 张,YOLO无人机识别算法实战训练教程,yolo无人机检测毕业设计,包含YOLO/VOC格式标注。数据集中包含 1 种分类,具体分类为:names: ['drone'],为无人机。检测场景为园区、工厂、机场等禁飞区,可以应用于空中秩序管理,信息安全保密领域等工作。基于QT的yolo可视化界面实战详细步骤。

2025-07-03 11:57:32 1118 2

原创 YOLO的TXT格式转Pascal的XML格式,数据集TXT标注文件转XML标注文件

如果你的任务需要与VOC兼容的工具或数据集交互,转换就非常必要。VOC格式是许多数据格式转换的中间格式(如COCO、TFRecord等),因此可能需要先转成VOC XML,再转成其他格式。VOC格式的XML文件可以存储更多元数据(如图像尺寸、数据库来源、分割信息等),而YOLO格式仅存储类别和边界框坐标。许多标注工具(如LabelImg)可以直接打开XML文件进行可视化检查,而YOLO格式的txt文件需要额外的解析。某些预训练模型(如基于VOC训练的模型)可能需要VOC格式的标注文件进行微调或测试。

2025-07-02 10:33:00 262

原创 【数据集】【YOLO】【目标检测】水果分类识别数据集 7676 张,YOLO水果分类识别算法实战训练教程,yolo水果分类识别毕业设计。

【数据集】【YOLO】【目标检测】水果分类识别数据集 7676 张,YOLO水果分类识别算法实战训练教程,yolo水果分类识别毕业设计,包含YOLO/VOC格式标注。数据集中包含 8 种分类,分别为['苹果’牛油果',香蕉',猕猴桃',柠檬',芒果,菠萝,草莓‘]。检测场景为水果加工厂、超市货架等,可以应用于自动统计不同品类、新鲜度的果蔬库存数量,预警腐烂风险,减少库存损耗,降低人力分拣成本等。基于QT的yolo可视化界面实战详细步骤。

2025-07-02 10:09:50 789

原创 YOLO的TXT格式转Labelme的JSON格式,数据集TXT标注文件转JSON标注文件。

在实例分割的训练任务中,使用的是 LabelMe 工具进行图像标注,标注文件是 json 格式,而 YOLO 训练则需要 txt 格式的标注文件。这篇文章提供一个脚本,可以将文件夹内的 YOLO 标注文件批量转换为 JSON 格式,并将 .json 文件输出到指定目录当中。

2025-06-27 09:43:29 249

原创 【数据集】【YOLO】【目标检测】航拍水面漂浮物识别数据集 4487 张,YOLO航拍水面垃圾识别算法实战训练教程,yolo无人机水面漂浮物识别毕业设计。

【数据集】【YOLO】【目标检测】航拍水面漂浮物识别数据集 4487 张,YOLO航拍水面垃圾识别算法实战训练教程,yolo无人机水面漂浮物识别毕业设计。包含YOLO/VOC格式标注。数据集中包含 5 种分类,具体分类为其他塑料, 塑料袋, 塑料瓶, 塑料杯, 塑料包装。可用于湖面、河道、海面进行水面漂浮物识别,可以应用于治理水域污染,保障水域安全,实现水质的智能监测等。基于QT的yolo可视化界面实战详细教程。

2025-06-27 09:30:05 2794

原创 labelme json格式转yolo txt格式,json标注文件转txt标注文件。

labelme json格式转yolo txt格式,json标注文件转txt标注文件。在实例分割的训练任务中,使用的是 LabelMe 工具进行图像标注,标注文件是 json 格式,而 YOLO 训练则需要 txt 格式的标注文件。这篇文章提供一个脚本,可以将文件夹内的 JSON 标注文件批量转换为 YOLO 格式,并将txt文件输出到指定目录当中。

2025-06-26 10:24:51 372

原创 【数据集】【YOLO】【实例分割】水果分类识别数据集 6227 张,YOLO水果分类识别算法实战训练教程,yolo水果分类识别毕业设计。

【数据集】【YOLO】【实例分割】水果分类识别数据集 6227 张,YOLO水果分类识别算法实战训练教程,yolo水果分类识别毕业设计。数据集中包含 8 种分类,names = ['Strawberry', 'banana', 'grapes', 'kiwi', 'mango', 'orange', 'pineapple', 'pomme']。包含COCO的json格式和Labelme的json格式标注。检测场景为水果加工厂、超市货架等。

2025-06-26 09:18:23 1204

原创 【数据集】【YOLO】【目标检测】光伏缺陷识别数据集 5153 张,YOLO光伏电池缺陷识别算法实战训练教程,yolo光伏板缺陷识别毕业设计。

【数据集】【YOLO】【目标检测】光伏缺陷识别数据集 5153 张,YOLO光伏电池缺陷识别算法实战训练教程,yolo光伏板缺陷识别毕业设计。数据集中包含 4 种分类,具体分类为:names: ['bird_drop', 'clean', 'cracked', 'dust'],分别为鸟粪、干净、裂缝划痕、灰尘。检测场景为屋顶房顶、草场、山区等,可以应用于对复杂缺陷的高效、准确识别,节约检修的人力成本和时间成本等。基于QT的yolo可视化界面实战详细教程。

2025-06-25 10:39:44 1313

原创 【数据集】【YOLO】【目标检测】害虫分类识别数据集 3472 张,YOLO农业害虫识别算法实战训练教程,yolo农作物害虫分类识别毕业设计。

【数据集】【YOLO】【目标检测】害虫分类识别数据集 3472 张,YOLO农业害虫识别算法实战训练教程,yolo农作物害虫分类识别毕业设计。数据集中包含 8 种分类。数据集图片来自国内外网站、网络爬虫等;可用于农作物害虫检测。 该数据集含有 3472 张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试农田环境、食品工厂环境等场景进行害虫分类识别。基于QT的yolo可视化界面实战详细步骤。

2025-06-25 09:30:27 1070

原创 【数据集】【YOLO】【目标检测】家具分类识别数据集 2052 张,YOLO家具识别算法实战训练教程,yolo家居分类识别毕业设计。

【数据集】【YOLO】【目标检测】家具分类识别数据集 2052 张,YOLO家具识别算法实战训练教程,yolo家居分类识别毕业设计。数据集中包含 3 种分类,具体分类为:names: ['Chair', 'Sofa', 'Table'],分别为椅子,沙发、桌子。可用于电商库房、零售、智能家居等场景进行家具分类识别。检测场景为电商库房、零售、智能家居等,可以应用于图像分析实现库存盘点与质量检测,家庭自动化、零售管理及无障碍设计等。基于QT的yolo可视化界面实战详细教程、源码分享。

2025-05-09 15:13:44 1171

原创 【数据集】【YOLO】【目标检测】人员站立、坐、躺、摔倒行为识别数据集 12223 张,YOLO人体行为识别算法实战训练教程,yolo人员行为识别毕业设计。

【数据集】【YOLO】【目标检测】人体站立、坐、躺、摔倒行为识别数据集 12223 张,YOLO人员行为识别算法实战训练教程,yolo人员行为识别毕业设计。数据集中包含 4 种分类,具体分类为:names: ['fallen', 'falling', 'sitting', 'stand'],分别为躺、坐、站、其他行为。检测场景为医院、办公楼、工厂等,可以应用于在工业安全、医疗监护、智慧安防等领域实现规模化应用,成为智能监控系统的核心组件等。基于QT的yolo可视化界面实战详细教程、源码分享。

2025-04-30 16:25:16 1596

原创 【数据集】【YOLO】【目标检测】救生衣穿戴识别数据集 6834 张,YOLO人员救生衣识别算法实战训练教程,yolo救生衣识别毕业设计。

【数据集】【YOLO】【目标检测】救生衣穿戴识别数据集 6834 张,YOLO人员救生衣识别算法实战训练教程,yolo救生衣识别毕业设计。数据集中包含 2 种分类,具体分类为:names: ['notwear', 'wear'],分别为未穿戴和穿戴。数据集来自国内外网站、网络爬虫、视频抽帧等;可用于水上活动、海上作业进行救生衣穿戴识别。检测场景为水上活动、海上作业等,可以应用于在航运、渔业、旅游等领域实现规模化应用,为水上安全提供智能化保障等。基于QT的yolo可视化界面实战详细教程、源码分享。

2025-04-30 11:25:39 821 1

原创 【数据集】【YOLO】【目标检测】工程车分类识别数据集 9998 张,YOLO工地工程车识别算法实战训练教程,yolo工程车分类识别毕业设计。

【数据集】【YOLO】【目标检测】工程车分类识别数据集 9998 张,YOLO工地工程车识别算法实战训练教程,yolo工程车分类识别毕业设计。数据集中包含 4 种分类,具体分类为:names: ['crane', 'excavator', 'tractor', 'truck'],分别为起重机、挖掘机、铲车、卡车。检测场景为施工地、厂矿等,可以应用于实时检测未佩戴安全帽、违规进入危险区域的工人,或工程车超载、碰撞等行为​​​​​​​等。基于QT的yolo可视化界面实战详细教程、源码分享。

2025-04-29 17:19:16 883

原创 【数据集】【YOLO】【图像分割】道路裂缝分类识别数据集 4710 张,YOLO路面裂缝分类识别算法实战训练教程,yolo道路裂缝分类识别毕业设计。

【数据集】【YOLO】【图像分割】道路裂缝分类识别数据集 4710 张,YOLO路面裂缝分类识别算法实战训练教程,yolo道路裂缝分类识别毕业设计。数据集中包含 3 种分类,具体分类为:网状裂缝、纵向裂缝、横向裂缝。数据集图片来自国内外网站、网络爬虫、视频抽帧等;可用于路面裂缝语义分割识别。检测场景为城市道路、园区路面、隧道、乡镇路面等,可以应用于通过裂缝几何特征(如宽度、走向)评估道路健康状态,预测病害发展趋势等。语音分割:道路裂缝分类识别模型。

2025-04-27 16:32:21 1586

原创 【数据集】【YOLO】【目标检测】挖掘机识别数据集 4327 张,YOLO挖掘机识别算法实战训练教程,yolo挖掘机识别毕业设计。

【数据集】【YOLO】【目标检测】挖掘机识别数据集 4327 张,YOLO挖掘机识别算法实战训练教程,yolo挖掘机识别毕业设计。数据集中包含 1 种分类,具体分类为:names: ['excavator'],对应挖掘机。数据集图片来自国内外网站、网络爬虫、视频抽帧等;可用于施工地、厂矿的挖掘机识别。检测场景为海洋,港口,河道内等,可以应用于自动识别挖掘机违规操作(如超载、碰撞风险),降低事故率等。基于QT的yolo可视化界面实战详细教程、源码分享。

2025-04-26 17:00:41 1117

原创 【数据集】【YOLO】【目标检测】船舶分类识别数据集 6923 张,YOLO船舶分类识别算法实战训练教程,yolo船舶分类识别毕业设计。

【数据集】【YOLO】【目标检测】船舶分类识别数据集 6923 张,YOLO船舶分类识别算法实战训练教程,yolo船舶分类识别毕业设计。数据集中包含 5 种分类,具体分类为:集装箱船、游轮、渔船、帆船、军舰。数据集图片来自国内外网站、网络爬虫、视频抽帧等;可用于船舶分类识别,水面船舶识别。检测场景为海洋,港口,河道内等,可以应用于海洋交通管理、渔业资源监测、海上救援、军事侦察等。基于QT的yolo可视化界面详细实战教程,源码分享。

2025-04-25 11:21:15 1586 5

原创 【数据集】【YOLO】【目标检测】海洋垃圾识别数据集 5125 张,YOLO海洋垃圾识别算法实战训练教程,yolo海底垃圾识别毕业设计。

【数据集】【YOLO】【目标检测】海洋垃圾识别数据集 5125 张,YOLO海洋垃圾识别算法实战训练教程,yolo海底垃圾识别毕业设计。数据集中包含 15 种分类,数据集图片来自国内外网站、网络爬虫、视频抽帧等;可用于海洋垃圾分类识别,海底垃圾识别。检测场景为海洋,港口,河道内等,可以应用于将目标检测算法与其他智能技术相结合,如无人机、无人船等自动化监测设备,实现海洋垃圾的实时、自动监测和清理。yolo可视化界面详细实战教程,源码分享。

2025-04-24 15:29:27 1401

原创 【数据集】【YOLO】【目标检测】超市商品分类数据集 7792 张,YOLO食品分类识别算法实战训练教程,yolo超市商品分类识别毕业设计。

【数据集】【YOLO】【目标检测】超市商品分类数据集 7792 张,YOLO食品分类识别算法实战训练教程,yolo超市商品分类识别毕业设计。数据集图片来自国内外网站、网络爬虫、视频抽帧等;可用于食品分类识别、超市商品识别。检测场景为超市、食品加工厂等,可以应用于提高运营效率和管理水平,实现自动化、智能化的商品分类。yolo可视化界面实战详细教程,源码分享。

2025-04-24 10:28:30 1422

原创 【数据集】【YOLO】【目标检测】安全帽、反光衣和安全鞋识别数据集 9911 张,YOLO施工地工人安全佩戴识别算法实战训练教程,yolo安全帽反光衣识别毕业设计。

【数据集】【YOLO】【目标检测】安全帽、反光衣和安全鞋识别数据集 9911 张,YOLO施工地工人安全佩戴识别算法实战训练教程,yolo安全帽反光衣识别毕业设计。数据集中包含5种分类:names:['Helmet', 'NO-Safety Vest', 'No Helmet', 'Safety Vest', 'shoes'],表示"安全帽、未穿戴反光衣、未穿戴安全帽、反光衣、安全鞋"。数据集图片来自国内外网站、网络爬虫等;检测场景为建筑工地、道路施工等高风险作业环境中;QT可视化界面实战教程;

2025-02-05 15:24:43 3369 1

原创 【数据集】【YOLO】【目标检测】猫狗识别数据集 1410 张,YOLO猫狗识别算法实战训练教程,yolo猫狗识别毕业设计。

【数据集】【YOLO】【目标检测】猫狗识别数据集 1410 张,YOLO猫狗识别算法实战训练教程,yolo猫狗识别毕业设计。数据集中包含2种分类:names:['cat', 'dog'],表示"猫、狗"。数据集图片来自国内外网站、网络爬虫等;可用于猫狗分类识别。检测场景为家居、宠物医院、城市动物管理等需要猫狗识别的场景,可以应用于宠物行为监控(如异常活动告警)、自动拍照喂食联动,流浪动物追踪与种群统计等。基于QT实现yolo可视化界面实战详细教程。

2025-02-05 11:24:01 2520

原创 【数据集】【YOLO】【目标检测】水藻识别数据集 1048 张,YOLO水藻识别算法实战训练教程,yolo水藻识别毕业设计。

【数据集】【YOLO】【目标检测】水藻识别数据集 1048 张,YOLO水藻识别算法实战训练教程,yolo水藻识别毕业设计。数据集中包含1种分类:names:['0'],表示"水藻"。数据集图片来自国内外网站、网络爬虫等;可用于河道水面水藻识别。检测场景为河道、水面、海洋、鱼塘等有水藻生长的场景,可以应用于环境监测、生态保护和水质管理等领域​​​​​​​实现水藻识别。基于QT的yolo可视化界面详细实战开发步骤。

2025-01-08 09:11:56 1607

原创 【数据集】【YOLO】【目标检测】反光衣识别数据集 5668 张,YOLO反光衣识别算法实战训练教程,yolo反光衣识别毕业设计。

【数据集】【YOLO】【目标检测】反光衣识别数据集 5668 张,YOLO反光衣识别算法实战训练教程,yolo反光衣识别毕业设计。数据集中包含2种分类:names:['no-vest', 'vest'],表示"未穿反光衣、穿反光衣"。数据集图片来自国内外网站、网络爬虫等;可用于施工地反光衣识别。检测场景为施工地、交通执法、夜间巡逻等有身着反光衣人员的场景,可以应用于为工地管理人员提供实时的安全监控工具,在交通执法、夜间巡逻过程中实现反光衣识别。基于QT的yolo可视化界面详细开发步骤。

2025-01-07 09:58:41 2057

原创 【数据集】【YOLO】【目标检测】垃圾分类识别数据集 2020 张,YOLO垃圾分类识别算法实战训练教程,yolo垃圾分类识别毕业设计。

【数据集】【YOLO】【目标检测】垃圾分类识别数据集 2020 张,YOLO垃圾分类识别算法实战训练教程,yolo垃圾分类识别毕业设计。包含5种分类:names:['glass', 'metal', 'paper', 'plastic', 'uht carton'],表示"玻璃瓶、易拉罐、纸、塑料、纸盒"。数据集图片来自国内外网站、网络爬虫等;检测场景为城市道路、公园、办公场所、垃圾回收工厂等需要垃圾分类的场景,可以应用于智能垃圾桶、垃圾回收站等场景,实现垃圾的分类。基于QT的可视化界面详细教程。

2024-12-27 14:39:44 6063 4

原创 【数据集】【YOLO】【目标检测】灭火器识别数据集 3261 张,YOLO灭火器识别算法实战训练教程,yolo灭火器识别毕业设计。

【数据集】【YOLO】【目标检测】灭火器识别数据集 3261 张,YOLO灭火器识别算法实战训练教程,yolo灭火器识别毕业设计。数据集中包含1种分类:names: ['extinguisher'],表示"灭火器"。数据集图片来自国内外网站、网络爬虫、监控采集等;可用于监控和移动设备灭火器识别。检测场景为工业园区、办公大楼、居民楼消防通道等有灭火器存放的区域,可以实现在火灾发生时快速准确地识别出灭火器的位置,为火灾的及时扑灭提供有力支持。基于QT的yolo可视化界面开发详细教程。

2024-12-26 09:57:00 1663

原创 【数据集】【YOLO】【目标检测】病虫害识别数据集 4809 张,YOLO病虫害识别算法实战训练教程,yolo病虫害识别毕业设计。

【数据集】【YOLO】【目标检测】病虫害识别数据集 4809 张,YOLO病虫害识别算法实战训练教程,yolo病虫害识别毕业设计,包含YOLO/VOC格式标注。数据集中包含4种分类:names:['Healthy Leaf', 'Leaf Mold', 'Septoria leaf spot', 'Tomato leaf bacterial spot'],表示"健康、霉菌、叶斑、细菌班"。数据集图片来自国内外网站、网络爬虫、监控采集等;基于QT的yolo可视化界面详细教程。

2024-12-25 11:42:27 5977

原创 【数据集】【YOLO】【目标检测】光伏识别数据集 11510 张,YOLO光伏识别算法实战训练教程,yolo光伏识别毕业设计。

【数据集】【YOLO】【目标检测】光伏识别数据集 11510 张,YOLO光伏识别算法实战训练教程,yolo光伏识别毕业设计。包含YOLO/VOC格式标注。数据集中包含1种分类:names:['Solar Panel'],表示"光伏"。数据集来自国内外网站图片采集、网络爬虫以及航拍采集;可用于无人机光伏识别。检测场景为高空、房顶、工厂等有光伏电池板的地方,可以实现对光伏电池板中各种缺陷的准确检测和定位,为光伏电池的生产和维护提供有力支持。基于QT的yolo可视化界面详细步骤。

2024-12-24 15:00:48 2434 4

原创 【数据集】【YOLO】【目标检测】羊识别数据集 2845 张,YOLO羊识别算法实战训练教程,yolo羊识别毕业设计。

【数据集】【YOLO】【目标检测】羊识别数据集 2845 张,YOLO羊识别算法实战训练教程,yolo羊识别毕业设计。数据集中包含1种分类:names:['Sheep'],表示"羊"。数据集来自国内外网站图片采集、监控视频采集、无人机采集数据;可用于无人机羊识别,监控羊识别。检测场景为牧场、草原等有放牧的区域,可用于对羊的准确识别与计数,提高畜牧业的生产效率和管理水平。基于QT的yolo可视化界面详细教程。

2024-11-26 10:01:16 2147

原创 【数据集】【YOLO】【目标检测】道路积雪、结冰识别数据集 2152 张,YOLO道路积雪、结冰识别算法实战训练教程,yolo道路积雪、结冰识别毕业设计。

【数据集】【YOLO】【目标检测】道路积雪、结冰识别数据集 2152 张,YOLO道路积雪、结冰识别算法实战训练教程,yolo道路积雪、结冰识别毕业设计。数据集中包含3种分类:names:['Snow_road', 'clear-road', 'object'],表示"积雪,干净路面,积雪"。数据集来自国内外网站图片采集、监控视频采集数据;可用于无人机道路积雪、结冰识别,监控道路积雪、结冰识别。检测场景为高速公路、城市道路、山区道路等场景。基于QT的yolo可视化界面详细教程。

2024-11-25 11:47:54 2171

原创 【数据集】【YOLO】【目标检测】牛只识别数据集 3371 张,YOLO牛只识别算法实战训练教程,yolo牛只识别毕业设计。

【数据集】【YOLO】【目标检测】牛只识别数据集 3371 张,YOLO牛只识别算法实战训练教程,yolo牛只识别毕业设计。数据集中包含1种分类:names: ['cattle'],表示"牛"。数据集来自国内外网站图片采集、无人机采集、监控视频采集数据,含三种视角!!如下所示;可用于无人机牛只识别,监控牛只识别。检测场景为牧场、牛棚等放牧区域,可用于牛只数量统计、健康监测和行为分析等。基于QT的yolo可视化界面详细教程。

2024-11-24 11:25:08 2147

原创 【数据集】【YOLO】【目标检测】航拍行人识别数据集 8328 张,YOLO无人机行人识别算法实战训练教程,yolo人员识别毕业设计。

【数据集】【YOLO】【目标检测】航拍行人识别数据集 8328 张,YOLO无人机行人识别算法实战训练教程,yolo毕业设计。数据集中包含1种分类:names: ['0'],表示"人"。数据集来自无人机航拍采集数据;可用于无人机航拍行人识别。检测场景为街道、商城、园区等有行人走动的区域,可用于公共安全监控、智能交通管理、人员搜救等。利用YOLO算法对航拍图像中的行人进行流量统计和轨迹分析,为交通规划和管理提供有力的支持。基于QT的yolo可视化界面详细教程。

2024-11-23 13:42:07 3376 9

原创 【数据集】【YOLO】【目标检测】无人机行人识别数据集 1394 张,YOLO航拍行人识别算法实战训练教程,yolo毕业设计。

【数据集】【YOLO】【目标检测】无人机行人识别数据集 1394 张,YOLO航拍行人识别算法实战训练教程,yolo毕业设计。数据集中包含1种分类:names: ['person'],表示"人"。数据集来自无人机采集数据;可用于无人机行人识别。检测场景为街道、商城、园区等有行人走动的区域,可用于公共安全监控、智能交通管理、人员搜救等。行人识别毕业设计。基于QT的yolo可视化界面详细教程。

2024-11-22 16:53:06 3028 2

原创 【数据集】【YOLO】【目标检测】人员睡岗、玩手机识别数据集 4653 张,YOLO人员睡岗、玩手机识别算法实战训练教程,yolo毕业设计。

【数据集】【YOLO】【目标检测】人员睡岗、玩手机识别数据集 4653 张,YOLO人员睡岗、玩手机识别算法实战训练教程,yolo毕业设计。数据集中包含3种分类:names: ['normal', 'play', 'sleep'],分别表示正常作业、玩手机、睡觉。数据集来自国内外图片网站、网络爬取数据、监控视频数据;可用于监控睡岗、玩手机识别。检测场景为工厂、仓库、监控室、交通岗哨、学校等需要连续值守或学习的场所,可用于办公场所、值班室人员行为监管等。基于QT的yolo可视化界面详细教程。

2024-11-21 15:22:12 3566 5

原创 【数据集】【YOLO】【目标检测】牛、羊、马等分类识别数据集 9897张,YOLO牧场动物分类识别算法实战训练教程,yolo毕业设计。

【数据集】【YOLO】【目标检测】牛、羊、马等分类识别数据集 9897张,YOLO牧场动物分类识别算法实战训练教程,yolo毕业设计。数据集中包含6种分类:names: ['camelus', 'cattle', 'kiang', 'seal', 'sheep', 'zebra'],分别表示马、牛、骆驼、海豹、羊、斑马等牧场畜牧动物。数据集来自国内外图片网站、大疆无人机视频采集;可用于智慧畜牧、智慧养殖、动物行为自动化监管等场景;基于QT的yolo可视化界面详细教程。动物分类识别毕业设计。

2024-11-16 10:30:00 3908 6

原创 【数据集】【YOLO】【目标检测】井盖破损识别数据集 3422 张,YOLO井盖开启识别算法实战训练教程。

【数据集】【YOLO】【目标检测】井盖破损识别数据集 3422 张,YOLO井盖开启识别算法实战训练教程。数据集包含5种分类:names: ['broke', 'circle', 'good', 'lose', 'uncovered'],表示破损、井圈问题、完好无损、井盖丢失、井盖开启。数据集来自国内外图片、网络视频抽帧和现实采集;可用于无人机井盖识别、监控井盖识别等。检测场景为城市、乡镇街道或者路面等有井盖存在的区域,可用于智慧交通、智慧城市、无人驾驶、城市安全预警。QT可视化界面。毕业设计。

2024-11-15 09:12:27 2811 4

原创 【数据集】【YOLO】【目标检测】游泳识别数据集 4481 张,游泳识别毕业设计,YOLO河道、海滩游泳识别算法实战训练教程。

【数据集】【YOLO】【目标检测】游泳识别数据集 4481 张,游泳识别毕业设计,YOLO河道、海滩游泳识别算法实战训练教程。数据集中包含1种分类:names: ['human'],表示“游泳者”。数据集大部分来自无人机现实取样采集,少部分为国内外图片网站、网络视频抽帧等;可用于无人机游泳识别、监控游泳识别等。检测场景为河道、海滩、室内游泳馆、水上乐园等有人员游泳的区域,可用于河道游泳安全预警、游泳监测、环保监管、饮用水安全。目标检测毕业设计,含yolo和QT代码。基于QT的yolo可视化界面。

2024-11-14 10:18:12 2504 2

数据集YOLO目标检测道路交通标志识别数据集 3630 张,YOLO交通路牌识别算法实战训练教程,yolo道路标识检测毕业设计,Pascalvoc 的 xml 格式标注好的,已划分训练、测试、验证集

数据集内容: 1. 多角度场景:监控摄像头视角,行人视角; 2. 标注内容:6个分类,['No_Entry', 'No_Left_Turn', 'No_Parking', 'No_Right_Turn', 'No_U_Turn', 'Stop'],分别为禁止通行、禁止左转、禁止停车、禁止右转、禁止掉头、减速慢行等; 3. 图片总量:3630 张图片数据; 4. 标注类型:含有Pascal VOC格式; 数据集结构: TrafficSigns_voc/ ——test/ ————.jpg ————.xml ——train/ ————.jpg ————.xml ——valid/ ————.jpg ————.xml 训练测试验证集内分别存放一一对应的jpg图像和xml标注文件。 道路交通标识检测算法的必要性: 1. 交通安全需求升级 随着全球汽车保有量突破15亿辆,交通事故已成为全球第九大死因。中国交通标志检测数据显示,约30%的交通事故与驾驶员未及时识别交通标志相关。例如,未遵守限速标志导致的超速事故占比达18%,未注意禁止转向标志引发的侧翻事故占比达12%。YOLO算法通过实时识别限速、禁止通行、警示标志等,可降低驾驶员反应时间需求,为自动驾驶系统提供关键决策依据。 2. 自动驾驶技术突破 L4级自动驾驶系统要求环境感知模块在100ms内完成交通标志识别。特斯拉Autopilot、Waymo等系统已将YOLO作为核心检测算法,其单阶段检测架构比Faster R-CNN等两阶段算法快3-5倍。YOLOv8在TT100K中国交通标志数据集上实现96.7%的mAP(均值平均精度),较YOLOv5提升8.2%,满足自动驾驶对实时性与准确性的双重严苛要求。

2025-07-03

数据集YOLO目标检测道路交通标识识别数据集 3630 张,YOLO交通路牌识别算法实战训练教程,yolo道路标识检测毕业设计,yolo的 txt 格式标注好的,已划分训练、测试、验证集

数据集内容: 1. 多角度场景:监控摄像头视角,行人视角; 2. 标注内容:6个分类,['No_Entry', 'No_Left_Turn', 'No_Parking', 'No_Right_Turn', 'No_U_Turn', 'Stop'],分别为禁止通行、禁止左转、禁止停车、禁止右转、禁止掉头、减速慢行等; 3. 图片总量:3630 张图片数据; 4. 标注类型:含有yolo TXT格式; 数据集结构: TrafficSigns_yolo/ ——test/ ————images/ ————labels/ ——train/ ————images/ ————labels/ ——valid/ ————images/ ————labels/ ——data.yaml 道路交通标识检测算法的必要性: 1. 交通安全需求升级 随着全球汽车保有量突破15亿辆,交通事故已成为全球第九大死因。中国交通标志检测数据显示,约30%的交通事故与驾驶员未及时识别交通标志相关。例如,未遵守限速标志导致的超速事故占比达18%,未注意禁止转向标志引发的侧翻事故占比达12%。YOLO算法通过实时识别限速、禁止通行、警示标志等,可降低驾驶员反应时间需求,为自动驾驶系统提供关键决策依据。 2. 自动驾驶技术突破 L4级自动驾驶系统要求环境感知模块在100ms内完成交通标志识别。特斯拉Autopilot、Waymo等系统已将YOLO作为核心检测算法,其单阶段检测架构比Faster R-CNN等两阶段算法快3-5倍。YOLOv8在TT100K中国交通标志数据集上实现96.7%的mAP(均值平均精度),较YOLOv5提升8.2%,满足自动驾驶对实时性与准确性的双重严苛要求。

2025-07-03

数据集YOLO目标检测猫狗识别数据集 2435张,Yolo格式数据集目标检测!

标签类别:names: ['cat', 'dog'] 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。 yolo格式文件转xml文件脚本可以私聊博主,也可以自行网上搜索代码执行。

2024-11-08

道路结冰数据集 1527 张,YOLO/VOC格式标注!

【数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含两种分类,分别是:names: ['clear-road', 'ice-road']。 资源文件内包含:Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件。 应用场景: 1、高速公路:道路结冰检测算法可以应用于高速公路的结冰预警与监控体系,提前识别出可能结冰的路段和时间点,为交通管理部门提供决策支持。 2、城市道路:通过道路结冰检测算法,可以实时监测城市道路的结冰情况,为城市交通管理提供及时、准确的信息。 3、特殊路段:道路结冰检测算法可以针对桥梁、隧道出入口等进行定制化设计,提高监测的准确性和针对性。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。

2024-11-02

数据集YOLO目标检测电动车进电梯检测数据集 97 张,Yolo格式数据集目标检测!

【数据集】【YOLO】【目标检测】电动车进电梯检测数据集 97 张,Yolo格式数据集目标检测! 标签类别:names: ['person','bicycle','motorcycle'] 电动车在电梯内发生爆燃,乘客可能无法承受高温和烟雾的伤害;电动车进入电梯后,对电梯的磕碰可能导致电梯产生运行故障,缩短其使用寿命;电动车上楼后占用消防通道,若发生火灾,会阻碍人员逃生,对建筑造成损害。因此,开发一种能够实时检测并预警电动车进入电梯的系统,对于提高电梯使用安全性具有重要意义。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。 yolo格式文件转xml文件脚本可以私聊博主,也可以自行网上搜索代码执行。

2024-11-06

数据集【YOLO目标检测】道路油污检测数据集 170 张,YOLO/VOC格式标注!

标签类别:names: ['bubble', 'petrol'] 资源文件内包含:资源图片数据集,YOLO格式的标注文件,data.yaml是数据集配置文件。 训练集和验证集已经完成划分!!! 道路油污识别是城市交通管理和环境保护中的重要任务。油污不仅影响道路的清洁度和美观度,还可能对车辆行驶安全构成威胁。然而,传统的油污检测方法主要依赖人工视觉检查,这种方法不仅耗时、成本高,而且结果的准确性和可重复性差。因此,开发一种自动化、智能化的油污识别系统显得尤为重要。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。

2024-11-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除