最近公共祖先 LCA

本文探讨了如何在有根树中高效计算最近公共祖先(LCA),通过引入二进制思想,减少逐级查找的时间复杂度,从O(n)提升到O(logn)。关键讲解了动态规划预处理每个节点的2的幂次辈祖先,并演示了如何利用这一技巧优化LCA的查找过程。

父亲和祖先

讲 最近公共祖先(Least Common Ancestors,LCA) 之前,先回到有根树的一些概念。

假设这棵树以 0 为根,那么就有 00 是 2,4 的父亲,44 是 1,5 的父亲,2 是 3,6 的父亲。

接下来说一下 祖先 这个概念。对于一个结点 xx,它自己,它的父亲,它的父亲的父亲 ⋯ 都是它的祖先。换句话来讲,xx 到根的最短路径上面的所有结点都是它的祖先。例如对于结点 1,它有三个祖先,分别是 1,4,0。

那么接下来我们来看最近公共祖先。对于树上的两个结点 x,y,它们都会有到根的一条最短路径。这两条路径必然有重复的点(因为都会到达根),而在这些重复的点当中,深度最大的点,就是 x,yx,y 的最近公共祖先。例如,图上 1,5 两个点的最近公共祖先是 4,而 1,3 两个点的最近公共祖先是 00。

如果是一棵随机生成的均匀的树,刚才的算法的时间耗费实际上已经足够我们去在很短的时间内求解一组点的最近公共祖先。但是如果这棵树比较极端(比如是一条链),那么直接按照 LCA 的定义去求解就会变得非常慢,一般而言都无法满足题目给出的时间要求。

求 LCA 最容易想到的方案是:

  • 先从 x 往上走到根,沿途会经过 x 所有的祖先,把它们用一个数组标记。
  • 再从 y 往上走到根,沿途会经过 y 所有的祖先,遇到的第一个被标记的点就是 x, 的最近公共祖先。

代码如下,时间复杂度为 O(n)。

 

int fa[MAX_N], vis[MAX_N];  // fa 数组保存每个结点的父节点,vis 数组用来标记
int LCA(int x, int y) {
    memset(vis, 0, sizeof vis);
    while (x != 0) {
        vis[x] = 1;
        x = fa[x];
    }
    while (vis[y] == 0) {
        y = fa[y];
    }
    return y;
}

 

标记所有的祖先似乎太浪费了,一种更好的想法是:先让 x,y 走到同一深度,然后一起往上走,第一个相遇的位置就是它们的 LCA。

那么需要先通过 DFS 求出每个结点的深度,代码如下:

int d[MAX_N], fa[MAX_N];  // d 数组保存每个结点的深度
void dfs(int u) {
    d[u] = d[fa[u]] + 1;
    for (int i = p[u]; i != -1; i = e[i].next) {
        int v = e[i].v;
        if (v != fa[u]) {
            fa[v] = u;
            dfs(v);
        }
    }
}

int lca(int x, int y) {
    if (d[x] < d[y]) {
        swap(x, y);    // 让 x 为深度更深的那个点
    }
    while (d[x] > d[y]) {
        x = fa[x];  // 让 x 和 y 处于同一深度
    }
    while (x != y) {
        x = fa[x];
        y = fa[y];
    }
    return x;
}

 

但这种做法的时间复杂度依然为 O(n)。

瓶颈在于通过 fa 数组往上走,每次走一步实在太慢了。那么有没有方法可以一次性走一大步呢?

答案是采用二进制的思想尝试往上跳,以下面这段代码为例

while (d[x] > d[y]) {
  x = fa[x];  // 让 x 和 y 处于同一深度
}

可以改为:

int K = 0;
while ((1 << (K + 1)) <= d[x]) {
    K++;
}
for (int i = K; i >= 0; i--) {
    //如果 x 的 2^i 祖先深度大于等于 y 的深度,x 就往上跳到 2^i 祖先
}

其中 K 为最大的整数满足 2 ^ K≤d[x]。

我们让 x 每次尝试跳 2^i 步,i 从 K 开始从大到小枚举。如果跳跃后深度依然不小于 y,就选择跳跃。

换种角度思考,设 t=d[x]-d[y],那么 t 的二进制表示中 1 的位置就是 x 要跳的那步。相当于用若干个不同的 2 的幂次来凑出这个 t,我们肯定会选择从大到小凑,并且最终方案肯定是唯一的。

同理,当 x,y 到达同一深度后,两个点继续同时往上跳的步骤也可以用这种二进制尝试跳跃的方法。

如果能在 O(1) 时间内得到个结点的 2 的幂次辈祖先,那么这种方法计算 LCA(x,y) 的时间复杂度就为 O(logn)。

现在的问题变为如何预处理每个结点的 2 的幂次辈祖先?

解决方法是采用动态规划,定义f[u][j]表示u结点 2^j 辈祖先(如果不存在就为 0)。那么f[u][0]就是u结点的父亲结点,在 DFS 求深度的时候同时维护一下即可。

int f[MAX_N][20], d[MAX_N];
void dfs(int u) {
    d[u] = d[f[u][0]] + 1;
    for (int i = p[u]; i != -1; i = e[i].next) {
        int v = e[i].v;
        if (v == f[u][0]) {
            continue;
        }
        f[v][0] = u;
        dfs(v);
    }
}

然后通过递推计算所有结点的 2 的幂次辈祖先:

for (int j = 1; (1 << j) <= n; j++) {
    for (int i = 1; i <= n; i++) {
        f[i][j] = f[f[i][j - 1]][j - 1];
    }
}

转移过程也很好理解,i 的 2^j 辈祖先等于 i 的 2 ^ j−1 辈祖先的 2 ^ j−1 辈祖先。

 

这步预处理的时间是复杂度为 O(nlogn)。

然后我们用刚才说的方法求 LCA:

int lca(int x, int y) {
    if (d[x] < d[y]) { // 让 x 是较深的点
        swap(x, y);
    }
    int K = 0;
    while ((1 << (K + 1)) <= d[x]) { // 找到不超过 x 深度的最大的 2 ^ k
        K++;
    }
    for (int j = K; j >= 0; j--) { // 尝试让 x 往上跳,跳到与 y 到同一高度
        if (d[f[x][j]] >= d[y]) {
            x = f[x][j];
        }
    }
    if (x == y) { // 如果这个时候两个点相等,那说明原来 y 是 x 的某个祖先,直接返回当前这个点就可以了
        return x;
    }
    for (int j = K; j >= 0; j--) { // 同时往上跳,跳到尽量高,但要求跳到的点还是不同的
        if (f[x][j] != f[y][j]) {
            x = f[x][j];
            y = f[y][j];
        }
    }
    return f[x][0]; // 最后 x 和 y 的父节点就是它们的 LCA 了
}

我们再回顾一下,首先通过交换确保x的深度更深,然后找到最大的 KK 满足 2K≤d[x],作为二进制尝试跳跃的上界。接着通过次若干次尝试往上跳,让xy的深度相同。

这时候如果xy已经是同一个结点了,就直接返回结果。否则,让两个点继续尝试同时往上跳一样的步数,注意只有在两个结点跳 2^j 次步后 不相等 时才会往上跳。换句话说,循环结束后,xy分别是它们 LCA 的儿子。因此它们的父节点就是 LCA。

### 关于最近公共祖先LCA)问题的解法 #### 定义与背景 最近公共祖先(Lowest Common Ancestor, LCA),是指在一棵树中找到两个节点的最低共同父节点。这个问题在处理树形结构的数据时非常常见,在蓝桥杯竞赛以及其他编程比赛中也经常作为考察点之一。 #### 基础方法:暴力遍历 最简单的方法是从根节点开始向下逐层比较给定的两个目标节点的位置关系,直到遇到第一个能同时到达这两个节点的分支点为止。这种方法虽然直观易懂,但在大型或深层级数较多的情况下效率较低[^1]。 #### 改进方案:倍增算法 一种更高效的解决方案是采用倍增算法来求解LCA问题。此方法预先通过动态规划的方式记录下每个节点向上跳转\(2^i\)步后的祖先位置,从而可以在O(logN)时间内完成查询操作。具体步骤如下: - **预处理阶段**:对于每一个节点u及其高度h(u),计算并存储其所有可能的\(2^k\)-th父母节点parent[u][k]。 ```cpp void dfs(int u,int fa){ parent[u][0]=fa; depth[u]=depth[fa]+1; for (int i=1;(1<<i)<=depth[u];++i) parent[u][i]=parent[parent[u][i-1]][i-1]; // ...其他逻辑... } ``` - **查询阶段**:当需要寻找两节点u和v之间的LCA时,先调整两者至相同深度再逐步上移直至相遇。 ```cpp int lca_query(int u,int v){ if(depth[u]<depth[v]) swap(u,v); while(depth[u]>depth[v]){ int k=log2(depth[u]-depth[v]); u=parent[u][k]; } if(u==v)return u; for(int k=max_level;k>=0;--k){ if(parent[u][k]!=parent[v][k]){ u=parent[u][k]; v=parent[v][k]; } } return parent[u][0]; } ``` 这种基于倍增的思想不仅适用于普通的无权有向树,也可以扩展到加权边的情况,并且能够很好地满足比赛中的时间复杂度要求[^2]。 #### 应用于蓝桥杯竞赛 考虑到蓝桥杯对参赛者的基础知识掌握程度有一定要求,建议深入理解上述两种基本策略的基础上,多做练习题巩固知识点。特别是针对不同类型的输入规模优化自己的解答方式,提高程序运行速度和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值