AI 产品经理必备核心能力:RPA、低代码与大模型该如何选型?

开篇:技术选型是AI产品经理的“生死线”

“技术路径选错了,产品从起步就注定难成。”

在AI技术狂飙的当下,RPA、低代码、大模型已成为AI产品经理打造智能产品的“三板斧”。但怎么选才不踩坑?如何避免“为技术而技术”,让工具真正服务业务?作为连接技术与业务的桥梁,你的选型判断力,直接决定产品能走多远。

本文将从选型底层逻辑、实战案例拆解、避坑实操指南三个维度,剖析RPA、低代码、大模型的选型方法论,帮你成为既能懂技术、又能解业务的“超级翻译官”。
在这里插入图片描述

一、RPA选型:从“流程自动化”到“智能闭环”

1. RPA的核心价值:效率跃迁+智能延伸

传统RPA:靠固定规则跑流程(比如批量处理Excel、自动发通知邮件),适配高重复、少变动的场景——简单说,就是“人能按步骤写明白的事,它就能干”。

AI+RPA:结合大模型处理非结构化数据(比如解析手写合同、听懂模糊语音指令),实现“从数据输入到决策输出”的全流程自动化。

某银行信贷审批流程:传统RPA只能提取固定格式的表单信息,而融入大模型的RPA能自动识别贷款材料里的手写备注、自由格式说明,甚至校验签名真实性,审批效率提升40%,人工干预减少80%。

2. 选型四大核心维度

维度关键指标
技术完备性是否支持文本、图像、语音多模态处理?有没有“流程挖掘→自动化执行→效果优化”的全链条能力?(如UiPath的Process Mining模块)
行业匹配度金融/政务优先选金智维(自带信创资质,符合监管要求);电商/物流可选影刀(与ERP系统集成更灵活)。
成本透明度隐性成本是否清晰?(比如二次开发费、运维服务费可能占总投入的60%,需提前锁定报价)
扩展灵活性能否本地部署?与SAP、用友等系统集成时是否需要额外开发接口?(如某企业因RPA与Oracle集成不畅,项目延期3个月)

避坑指南

  • 警惕“小马拉大车”:影刀个人版单日处理超5000条数据时易卡顿,需提前评估业务量(企业级版本支持分布式部署,可承载10万+日处理量);
  • 容错性是底线:金融场景必须选支持操作日志全留存的工具(如金智维),避免因数据篡改导致合规风险。

二、低代码选型:从“降低门槛”到“生态协同”

1. 低代码的核心价值:降低开发门槛+加速迭代效率

对业务端:拖拽式操作让非技术人员也能搭流程(比如人事做请假审批、财务做报销单),不用再等技术排期。

对技术端:能与RPA、大模型快速联动,比如用低代码搭一个“客服工单系统”,再接入大模型自动生成回复,轻松实现“低代码+AI”的智能产品。

某汽车工厂生产监控系统:通过低代码平台(如炎黄盈动)快速搭建设备状态看板,结合大模型实时分析传感器数据生成故障预警,开发周期从3个月缩至1个月,设备停机时间减少30%。

2. 选型三大关键判断

1.易用性与复杂度的平衡

  • 轻量工具(如简道云、八爪鱼):适合简单表单、基础审批,但复杂流程(如供应链全链路管理)容易“卡壳”;
  • 企业级平台(如Appian、炎黄盈动):支持流程嵌套、跨系统数据联动,适合中大型企业的复杂场景。

2. 生态开放度
是否能无缝对接RPA工具(如调用影刀的自动化脚本)、大模型API(如直接接入通义千问的对话能力)?比如钉钉低代码平台已内置大模型插件,可直接拖拽调用AI能力。

3. 行业实战验证
政务场景优先选氚云(与政务云适配度高);零售场景可选实在智能(自带促销策略优化模型,曾帮某连锁超市GMV提升23%)。

避坑指南

  • 别迷信“通用万能”:某通用低代码平台在医疗电子病历场景因不符合《电子病历应用管理规范》,导致项目中途更换工具,额外投入超百万;
  • 警惕“黑盒开发”:确保平台提供完整API文档和开发者社区(如Mendix的开发者论坛可直接获取行业模板),否则二次开发会很被动。

三、大模型选型:从“通用智能”到“场景适配”

1. 大模型的核心价值:打破信息壁垒+精准决策

通用能力:能读文本、懂逻辑、处理图像/语音(比如看图说内容、听语音写报告),是“基础智能底座”。

场景适配:得贴合业务痛点——比如客服需要“听懂用户潜台词”,医疗需要“看懂病历专业术语”,合规性更是硬指标。

某电商平台智能客服:用通义千问Qwen3做底层模型,不仅能解答商品咨询,还能通过用户历史对话判断“是否有退货倾向”,主动推送售后政策,首次解决率达95%,客服人员日均处理量提升2倍。

2. 选型三维评估框架

维度关键指标
技术硬实力基准测试得分(如MMLU、C-Eval)、推理速度(如单轮响应是否<500ms)、微调成本(增量训练占总投入比)。
场景贴合度是否有垂直领域知识库?(如医疗模型需包含《临床诊疗指南》,金融模型需懂监管条文);教育场景优先选带内容安全过滤的(如智谱AI)。
成本可控性API调用单价(如通义千问比GPT-4低30%)、私有化部署成本(服务器+运维年投入是否超预算50%)。

选型策略

  • 通用场景(如企业话术生成)选通义千问、Llama 3(成本低+迭代快);
  • 垂直场景(如法律合同审查)选北大法宝AI、幂律智能(自带行业知识库)。

避坑指南

  • 别陷入“技术迷信”:某企业用通用大模型处理财务报表,因对“权责发生制”等专业术语理解偏差,导致核算错误率上升15%;
  • 数据安全是红线:金融/政务场景必须选支持本地部署的(如金智维大模型插件),避免数据出境风险。

四、AI产品经理的核心能力:从工具拼接到底层生态

1. 技术协同:1+1>2的组合逻辑

不是简单把RPA、低代码、大模型“拼”起来,而是让它们形成闭环:

  • RPA做“执行者”(自动操作系统);
  • 低代码做“连接器”(搭建业务界面);
  • 大模型做“决策者”(处理模糊需求)。

政务服务智能体:居民拍一张身份证+手写诉求,RPA自动上传系统,低代码搭建的界面展示进度,大模型把政策条文翻译成“大白话”,百姓咨询响应时间从24小时缩至10分钟。

2. 价值闭环:从“做了”到“做好”

光上线没用,得能算清“投入产出”:

  • 成本:工具采购费+实施费+运维费(警惕某RPA厂商运维费年涨30%);
  • 收益:效率提升(如审批时长)、成本下降(如人工减少)、体验优化(如用户满意度)。

关键动作:上线前必须画好“价值监测仪表盘”,比如自动生成“每周效率提升报告”,让业务方直观看到效果。

3. 伦理与边界:智能的“刹车系统”

  • 明确能力边界:比如通义千问不擅长复杂公式计算,就得在产品设计中加入人工校验节点;
  • 守住合规底线:优先选通过ISO 27701数据合规认证的工具,避免因“算法偏见”(如性别、地域歧视)引发风险。

五、结语:AI产品经理的“终极战场”是业务痛点

“技术选型没有最优解,只有最贴合业务的答案。”

RPA、低代码、大模型再强大,终究是工具。真正的高手,是能看透业务痛点本质,让技术成为“解题钥匙”——这才是AI产品经理的核心竞争力。

六、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

七、为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

八、大模型入门到实战全套学习大礼包

1、大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

img


2、大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

在这里插入图片描述

3、AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

img

4、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

img

5、大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

img

适用人群

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值