
深度学习
文章平均质量分 70
骆驼算法学习笔记
我是 骆驼 喜欢人工智能,行动派 创造力,思考力,学习力提升修炼进行中 欢迎志同道的人一起学习~
尼采的三种境界“骆驼,狮子,孩子”在数据分析里我还只是一只骆驼,希望能吸取到更多的知识。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TF2.0使用tf.data处理数据建模Demo
目录背景数据集特征处理模型构建及评估背景:很多TF模型的例子都是使用dataframe进行数据处理及读取的,在部署及大任务处理时可能会遇到需要特征额外处理及内存不足等问题,所以想直接使用tf.data将预处理及数据读取批次等问题直接处理掉。本Demo包含了以下完整代码:用tf.data建立了一个输入流水线(pipeline),用于对行进行分批(batch)和随机排序(shuffle)。 用特征列将 CSV 中的列映射到用于训练模型的特征。 用 Keras 构建,训练并..原创 2021-06-22 20:33:56 · 715 阅读 · 0 评论 -
tf.tensordot运算(转)
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/u013337743/article/details/98903601函数原型:tf.tensordot(a, b, axes)tensordot函数用来进行矩阵相乘,它的一个好处是:当a和b的维度不同时,也可以相乘。举例:1.import tensorflow as tfa = tf.ones(shape=[2,3,3]...转载 2020-08-23 22:15:24 · 782 阅读 · 0 评论 -
Caffe学习笔记5--deploy文件的修改与使用
deploy文件的修改目是为了我们能够真正使用训练好的模型进行预测,输出概率及最佳结果的重要过程。问题背景:如我们前面已经生成了一个预测手写体识别的模型,我们现在如何预测某个人写的数字是多少呢?预测的概率是多少呢?最终解决的结果:为了达到以上的结果,我们需要做3步骤第一步,修改mnist_deploy.prorotxt文件第二步,编写test_m原创 2017-02-06 23:15:37 · 8423 阅读 · 6 评论 -
Tensorflow学习笔记--cifar10 cnn分类器代码
数据集使用了cifar10数据,实现了一个cnn的分类器。1)下载地址:gti clone https://github.com/tensorflow/models.git 包含了cifar10等python包2)分层如下:conv1,pool1,norm1,conv2,norm2,pool2,local3,local4,logits3)其中用了多线程,如果使用with tf.Session() as sess 会报错,所以最后使用 sess = tf.InteractiveSession()4原创 2017-05-13 17:31:54 · 2262 阅读 · 0 评论 -
nn优化研究
使用mnist数据集与tensorflow工具做 神经网络的优化研究工作#方法一:nn结构 2层import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #数据准备mnist = input_data.read_data_sets("MNIST_data",one_hot=True原创 2017-04-23 17:26:22 · 708 阅读 · 0 评论 -
Tensorflow学习笔记--MNIST LSTM分类器代码
前言:您通过学习LSTM知识后(http://www.jianshu.com/p/9dc9f41f0b29) 通过以下代码完成一次实践。dataguru-tf学习与应用 第7课课后习题:1.解释outputs和final_state有多少个维度,每个维度是代表什么。2.解释lstm网络的运行原理。原创 2017-05-21 20:31:31 · 1954 阅读 · 0 评论 -
nn优化研究(二)
there is amazing question:from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfsess = tf.InteractiveSession()mnist = input_data.read_data_sets('MNIST_data',one_hot原创 2017-04-25 22:18:46 · 613 阅读 · 0 评论 -
Tensorflow学习笔记--使用keras完成文本情感分类问题
代码记录# -*- coding:utf-8 -*-import numpy as npimport pandas as pdimport jiebaimport csvdf = pd.read_csv('train_data.csv',encoding='utf-8')df['label']=1df.loc[df['satisfaction_id']==1,['lab原创 2017-05-08 23:07:34 · 3574 阅读 · 0 评论 -
Tensorflow学习笔记--使用迁移学习做自己的图像分类器(Inception v3)
本文主要使用inception v3的模型,再后面接一个softmax,做一个分类器。具体代码都是参照tf github。整体步骤:步骤一:数据准备,准备自己要分类的图片训练样本。步骤二:retrain.py 程序,用于下载inception v3模型及训练后面的分类器(可见最后的代码)步骤三:训练 命令步骤四:预测 prediction.py 程序,用于调用新生成的模原创 2017-05-30 22:50:01 · 28605 阅读 · 26 评论 -
youtube推荐系统论文学习
尽可能简明扼要,如有错误或我没有理解的地方请指点,互相讨论。原论文地址目录一、整体架构二、召回模块(match)三、排序模块(ranking)四、参考文献及额外知识点:一、整体架构YouTube推荐主要分为两块:1)match(召回) 2)ranking(排序)二、召回模块(match)核心思想:使用网络训练 用户向量U 和 视频向量V,线上使用使用to...原创 2019-05-29 22:56:56 · 625 阅读 · 0 评论 -
deepFM论文学习
前言:deepFM结构比较清晰,更多信息可以参考最后github的代码。核心思想:在dl基础上增加了FM特征(结构非常类似wdl)。FM(linear+二介组合特征)细节:1、每个特征都是一个field 映射成embedding向量2、FM模型与deep part共享feature embedding3、不需要预训练FM得到隐向量4、论文给出的FM简化公式方便计算...原创 2019-06-02 15:54:01 · 574 阅读 · 0 评论 -
Tensorflow学习笔记--模型保存与调取
注:本文主要通过莫烦的python学习视频记录的内容,如果喜欢请支持莫烦python。谢谢目前tf的模型保存其实只是参数保存,所以保存文件时你特别要主要以下几点:1、一定要设定好参数的数据类型!2、设定参数的名称,并且一一对应!3、读取参数时,需要设定好模型图!下面做一个简单的demo,供各位参考:保存模型:import tensorflow as tf原创 2017-04-09 14:00:00 · 12407 阅读 · 11 评论 -
TensorFlow学习笔记--GPU报错upgrade your CuDNN library to match
在我使用线性回归做例子的时候GPU能正常运行,但在使用CNN时,神奇的事情发生了:Loaded runtime CuDNN library: 5005 (compatibility version 5000) but source was compiled with 5105 (compatibility version 5100). If using a binary install, u原创 2017-02-15 00:35:13 · 6371 阅读 · 3 评论 -
深度学习资料整理--有用的网站
深度学习资料的githubhttps://github.com/kjw0612/google公开论文(含deepmind)https://research.google.com/pubs/BrainTeam.html原创 2017-02-19 14:17:13 · 1206 阅读 · 0 评论 -
TensorFlow学习笔记--比较细的知识点blog纪录
TensorFlow四种Cross Entropy算法实现和应用http://www.tuicool.com/articles/n22m2az转载 2017-02-13 17:31:14 · 853 阅读 · 0 评论 -
Tensorflow学习笔记--RNN精要及代码实现
RNN介绍代码实现原创 2017-02-17 00:46:33 · 5578 阅读 · 0 评论 -
BP神经网络(python代码)
神经网络是深度学习的基础。个人理解神经网络就是可以拟合任何一种广义线性模型的结构,本文主要记录python代码的学习笔记。原创 2016-02-23 17:34:02 · 16831 阅读 · 7 评论 -
TensorFlow学习笔记--mnist可视化版本
主要代码tensorflow的官网上都有,这个版本主要是增加了一些可视化的东西。方便观察一些变量。注:以下代码为1.0版本下原创 2017-02-12 16:35:51 · 1988 阅读 · 0 评论 -
TensorFlow学习笔记--1.0版本下的可视化
老版本的部分api已经不能使用,所以在此更新一个1.0版本的可视化模版本文章主要从一个神经网络为例子,然后分别展现2个版本:第一个是展现神经网络的结构,第二个是展现训练迭代的loss及权重图接下来我们对上面的代码进行一次可视化的修改:代码如下原创 2017-02-12 11:22:13 · 4562 阅读 · 1 评论 -
TensorFlow学习笔记--1.0 版本的一个小坑记录
主要是常用的api有一定的更改:tf.mul、tf.sub 和 tf.neg 被弃用,现在使用的是 tf.multiply、tf.subtract 和 tf.negative.新的版本中这些方法已经木有了~~~各位注意下。=======1.0更改的apiTensorFlow/models 被移到了一个单独的 GitHub repository.除法和原创 2017-02-10 00:27:07 · 14872 阅读 · 0 评论 -
深度学习1--机器配置与双系统安装
本篇文章主要说明一下本人使用的机器配置及双系统的安装。原创 2017-01-20 01:02:04 · 1361 阅读 · 0 评论 -
深度学习2--安装opencv2.4(材料都在百度云上)
非常重要的前言:本人因为被坑过,所以建议各位最好在安装caffe第三方库前安装 opencv。主要原因是caffe官网要安装 apt-get install libopencv-dev 命令会导致你安装的opencv版本与此产生版本冲突,所以建议先安装opencv。不然你冲突了还要卸载重新安装,比较麻烦。注意:当你已经安装好opencv时,就不需要再需要apt-get install libo原创 2017-01-23 23:09:20 · 3494 阅读 · 3 评论 -
深度学习3--caffe的安装与测试(CPU版本)
caffe安装官网推荐:http://caffe.berkeleyvision.org/install_apt.html安装依赖库$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler$ sudo a原创 2017-01-23 23:35:01 · 568 阅读 · 0 评论 -
深度学习4--mnist运行测试
本文主要运行一个手写体数字识别的程序,熟悉一下整体caffe的运行过程。手写体数字数据库介绍:https://en.wikipedia.org/wiki/MNIST_database。主要就是标注了0~9的数字图片,我们可以运用机器学习的算法完成对图片识别的预测。主要分为3个步骤:1、获取数据 2、转换数据格式 3、训练 4、预测脚本代码如下://获取数据$ ./data/m原创 2017-01-28 18:08:58 · 842 阅读 · 0 评论 -
TensorFlow学习笔记--CNN精要及实现
1、有了神经网络,为什么有CNN?如果全部使用神经网络,会导致权重过多,计算量增大,无法正常计算。CNN个人理解为特征的提取,在不损失太多信息量的情况下,减小权重数量,使得网络更容易迭代。最经典的可以如图所示:如果我们全部使用全连接,则对于图像的处理我们第一层就需要1亿个权重,我们使用了cnn,共享权重机制则只需要3.5W个权重。2、内存估算方法原创 2017-02-15 22:36:48 · 1557 阅读 · 0 评论