负概率与科亨 - 斯佩克定理:量子计算中的创新探索
1. 负概率在不确定性量化中的应用
1.1 蒙特卡罗方法与方差分析
在不确定性量化中,蒙特卡罗方法是一种常用的工具。对于方差的分析,正态分布起着重要作用。假设我们有 (n) 个独立的随机变量 (\Delta x_i),其方差为 (V_i = \sigma_i^2),那么它们的线性组合 (\Delta y = \sum_{i = 1}^{n} c_i \cdot \Delta x_i) 也服从正态分布,方差为 (V = \sum_{i = 1}^{n} (c_i)^2 \cdot V_i)。
为了找到满足这一性质的分布 (\rho_1(x)),我们考虑最简单的情况,即 (V_1 = \cdots = V_n = 1)。此时,若 (n) 个独立随机变量 (\Delta x_1, \cdots, \Delta x_n) 具有相同的分布且方差为 1,则它们的线性组合 (\Delta y) 具有相同的分布,但经过重新缩放,方差为 (V = \sum_{i = 1}^{n} (c_i)^2)。
设 (\rho_1(x)) 为所需的概率分布,其特征函数为 (\chi_1(\omega) = E[\exp(i \cdot \omega \cdot \Delta x_1)])。对于 (c_i \cdot \Delta x_i),其特征函数为 (\chi_1(c_i \cdot \omega))。对于多个独立随机变量的和,其特征函数等于特征函数的乘积,因此 (\sum_{i = 1}^{n} c_i \cdot \Delta x_i) 的特征函数为 (\chi_1(c_1 \cdot \omega) \cdots \chi_