29、神经网络中的投影算子与一步求解方法

神经网络中的投影算子与一步求解方法

1. 投影算子与神经网络一步求解

1.1 投影算子的基本原理

投影算子 (Q) 对列向量的线性组合与向量 (Y) 不同,但与 (Y) 的距离最小。这一原理基于投影的定义,即投影向量 (QY) 与原始向量 (Y) 之间的距离最小。

1.2 神经元输出表达式

神经元的输出 (y) 由以下表达式给出:
[y_j = f \left[\sum_{i} w_i A_{i, j} - \theta \right]]
其中,权重 (w_j) 是形态发生源,函数 (f) 是阶跃函数(即 Heaviside 函数),定义如下:
[
f(x) =
\begin{cases}
1, & x > 0 \
0, & x \leq 0
\end{cases}
]

1.3 权重计算与阈值选择

输入向量的叠加为 (\sum_{i} w_i A_{i, j}),假设神经元的权重可以通过将设计函数 (Y) 投影到输入向量 (A) 的空间来计算。由于 (QY \neq Y),我们选择输入 (A) 中投影与 (Y) 相似的 (Y)。为了使式中的 (y_j) 等于输出 (Y) 的布尔向量,我们需要选择一个阈值。阈值的计算表达式为:
[\theta = \frac{\min[(QY)Y] + \max[(QY)(1 - Y)]}{2}]

1.4 示例计算

假设 (Y = 1) 时,值 (V_1 = \left[\frac{2}{3}\right]);(Y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值