神经网络中的投影算子与一步求解方法
1. 投影算子与神经网络一步求解
1.1 投影算子的基本原理
投影算子 (Q) 对列向量的线性组合与向量 (Y) 不同,但与 (Y) 的距离最小。这一原理基于投影的定义,即投影向量 (QY) 与原始向量 (Y) 之间的距离最小。
1.2 神经元输出表达式
神经元的输出 (y) 由以下表达式给出:
[y_j = f \left[\sum_{i} w_i A_{i, j} - \theta \right]]
其中,权重 (w_j) 是形态发生源,函数 (f) 是阶跃函数(即 Heaviside 函数),定义如下:
[
f(x) =
\begin{cases}
1, & x > 0 \
0, & x \leq 0
\end{cases}
]
1.3 权重计算与阈值选择
输入向量的叠加为 (\sum_{i} w_i A_{i, j}),假设神经元的权重可以通过将设计函数 (Y) 投影到输入向量 (A) 的空间来计算。由于 (QY \neq Y),我们选择输入 (A) 中投影与 (Y) 相似的 (Y)。为了使式中的 (y_j) 等于输出 (Y) 的布尔向量,我们需要选择一个阈值。阈值的计算表达式为:
[\theta = \frac{\min[(QY)Y] + \max[(QY)(1 - Y)]}{2}]
1.4 示例计算
假设 (Y = 1) 时,值 (V_1 = \left[\frac{2}{3}\right]);(Y