基于量子粒子群优化的分布式发电最优分配研究
1. 分布式发电(DG)分配概述
分布式发电(DG)与传统发电不同,它是指利用靠近终端用户的小型发电单元,将部分所需电力直接输送给用户的一种发电方式。这需要对电能发电方案进行一些改变。DG 也被称为分散发电、嵌入式发电或分布式发电,其最常见的定义是直接连接到配电网或安装在用户电表处的电源。
如今,技术的发展为 DG 在经济、技术和环境等不同领域带来了巨大的效益。在电力系统中使用 DG 可以提高能源效率、电能质量和系统安全性。由于 DG 在经济和安全方面的优势,其在电网中的集成度不断提高。这些优势可以通过采用适当的规划方法,对 DG 进行最优选择、规模确定和位置布置来实现。分布式资源的最优分配旨在在考虑等式和不等式约束的情况下,最小化目标函数。电力系统中 DG 最优分配的目标是在选定的网络中为分布式发电单元选择合适的规模和位置。
传统发电厂和变电站的扩建存在技术和环境限制。此外,不稳定的化石燃料市场促使电力市场转向新能源。同时,也有许多激励措施鼓励网络规划者在配电网中使用热电联产(CHP)资源。在分布式网络中集成 DG 需要考虑的一些问题包括:功率损耗、电压控制、可靠性、稳定性和故障水平。可以说,在电网中安装 DG 会改变网络特性。
分布式发电分配(DGA)可以作为分布式发电规划(DGP)的一部分进行研究。由于 DGA 和 DGP 具有相同的目标、约束和优化方法,因此大部分专注于分布式发电规划的研究都在这一部分进行了回顾。根据选定的目标和相应的运行约束,DGP 中采用了许多方法。这些方法可以根据其优化方法进行分类,如常规搜索方法、智能方法或模糊方法。以下是对 DGP 中使用的目标函数和约束及其数学算法的总结: