图:是一种非线性结构
形式化的描述: G={V,R}
V:图中各个顶点元素(如果这个图代表的是地图,这个顶点就是各个点的地址)
R:关系集合,图中顶点与顶点之间的关系(如果是地图,这个关系集合可能就代表的是各个地点之间的距离)
在顶点与顶点之间的关系上面加上一个权值(w),这种权值代表的意义可能会不一样
如果没有权值,顶点与顶点之间可能只有是否能到达的情况,但是不知道到达它需要的"距离"
图是一个二元组:描述V(顶点的代号,我们需要一个"数组") 描述R(可能是两点之间的距离,我们也需要一个"数组"去描述)
图分为两种
1 有向图:关系是有方向的(你可以想象是一个单行道)
有去不一定有来
在画图的时候,关系是有箭头指向的
2 无向图:关系是没有方向的(你可以想象是小区的小道,你过去是走这一条,回来的时候也是走的这一条)
有去一定有来
在画图的时候,关系是没有箭头指向的
网:带权值的图我们就叫网
顶点的度:有出度也有入度
如果图是有向图,这个顶点有出度不一定有入度,有入度不一定有出度
如果图是无向图,这个顶点有出度一定有入度
一般图里面算度的数量的时候分别都要算入度和出度的数量
出度:拓扑 --> 找一个没有入度的顶点出发
通过出度到达另外一个顶点,然后将这个点的入度全部删除
然后从下一个点继续开始,如果最后能将图里面的所有的顶点都遍历一遍
那个这个图就叫拓扑有序,否则就叫拓扑无序
入度:逆拓扑 -> 跟上面的是反的
图:里面主要要搞定一个叫路径的问题
1 最短路径 --- 最短的那一条
2 关键路径 --- 在覆盖所有的工作流程里面找最短的那些路径
这些路径里面最长的那条路径就叫关键路径
计算机里面描述图
图是一个二元组,因此需要用至少两个东西分别描述顶点元素集合,关系集合
假设你的顶点是ABCDEFG -> 我们开一个char[]就可以描述了
假设你的顶点是"长沙" "武汉"... -> char *[]描述
假设你的关系集合为距离 -> int [][]
我们有几种方式去做图的保存
"数组表示法" -> 邻接矩阵
"链表表示法" -> 邻接表(逆邻接表) 十字链表 邻接多重表
邻接矩阵:通过顶点元素数组和关系集合数组来描述
通过画图可以看出,邻接矩阵适合稠密图
邻接表:通过顶点元素数组和关系链表来描述(有向图无向图都能做)
十字链表:主要搞定有向图(可以快速反应这个点的入度与出度)
邻接多重表:主要搞定无向图(有去必有来,因此可以少建立很多的关系)
通过画图可以看出,链表表示法适合稀松图
图的遍历
1 深度优先DFS:树里面的先序遍历的扩展
图里面的任何一个顶点都可能是出发点
从出发点开始,将其遍历,然后以深度优先的方式继续遍历它的邻接点(和它有直接关系的点
在画图的时候有一根线和它连起来了,这个点就是它的邻接点)
邻接点遍历完毕继续以深度优先遍历它的邻接点的邻接点
这个点有去也有可能有来,遍历的时候就可能会遇到刚刚遍历过点
因此我们需要一个辅助向量来表明这个顶点是不是已经被遍历过了
char V[10];
visit[10] -> visit[0]表示V[0]是不是已经被访问 visit[1]表示V[1]是不是已经被访问.....
0没有被遍历,1表示遍历过了
if(visit[i] == 0)
{
访问V[i]
visit[i] = 1;//标记已经被访问过
DFS(V[i]的邻接点) //以相同的规则去访问这个邻接点
}
访问w;
for(v = 从w第一个邻接点开始;v邻接点存在;v = w下一个邻接点)
{
if(visit[v] == 0)
{
//访问v
visit[v] == 1;
DFS(v);
}
}
2 广度优先BFS:树里面的层次遍历的扩展
利用队列来进行每一层每一层的遍历
入队访问出队访问都可以
从起点开始,将它入队
出队,转向它的下一辈(它所有的邻接点(前面有可能已经被访问过,访问过的要排除))
为了确保孤岛也能被访问,我们需要将每一个点都要以BFS的形式走一遍
BFS(v)
{
//将顶点入队
queue_push(v);
while(队列不为空)
{
v = queue_front();
queue_pop();
for(i = v的所有邻接点)
{
if(visit[i] == 0) //这些邻接点没有被访问你才需要去访问
{
visit[i] = 1;
queue_push(i);
}
}
}
}
for(i < 顶点个数个数)//防止有孤岛 所以每一个点都要试一次BFS
{
if(visit[i] == 0)
{
BFS(i);
}
}
图里面最需要搞定的一件事情就是最短路径
有两种经典的算法来解决这个问题
1 弗洛伊德算法 ---- 将所有的可能都列举出来,从中找出最优的那种可能
这个算法效率有点低,但是够简单,核心思路就是我从
A -> B在我遍历的过程中发现,通过C点能优化A -> B的距离
那么你的C点就是更好的途经点
当我们将所有的C点都弄到手,最后留下来的那个C点就是最优解
由于要遍历所有的C点,因此效率较低
如果比喻为吃饭,我把所有的东西都吃了,最后肯定饱
2 迪杰斯特拉算法 ---- 贪心算法,像吃饭,我一边吃一边观察我是不是饱了,我发现
某一个时候我吃饱了,那么我就不需要再吃了
我每次都吃那个最喜欢吃的,一直吃到饱为止,它可以过滤掉很多不必须要的可能
A -> B,每次我都找更优的那个解,每次都是在待找的里面找最优的
当我最后到达B的时候找到的这个更优解就变成了最优解
它的核心思路就是每次都在待找序列里面找最优的,一直找下去,找到终点就结束了
你得到的这个到终点的路径一定是最优的
去实现迪杰斯特拉算法的时候我们需要三个向量
1 到某一个顶点的最优路径有没有求出来
我们可以自己定义一个标识,一般是0表示没有求出,1表示求出来了
int s[n];n:顶点的个数 与顶点的下标一一对应
s[0] == 0 -> V[0]还没有求出来最短路径
s[0] == 1 -> V[0]求出来最短路径
如果你想要得到到v顶点的最优解,s[v] == 1
初始化:只有起点到起点的最短路径已经求出来了,其它的都还没有求出来
2 这个向量是表示到此顶点它的路径有多长
int d[n];n:顶点的个数 与顶点的下标一一对应
d[0]里面的值代表的是起点(已知的起点)到我V[0]终点所需要的路径的大小
d[v]里面的值代表的是起点到我V[v]终点所需要的路径的大小
初始化:起点到这个顶点的直接距离
假设起点是v0 终点为是v1
d[v1] = R[v0][v1]
3 这个向量是表示起到到各个顶点之间的路径 --- 表示起点 -> 中间 -> 终点
这一段路径
char p[][];每一行代表的是起点到我这个顶点走的路径
char p[0] : 起点到V[0]所要走过的路
char p[v] : 起点到V[v]所要走过的路
初始化:只有起点
假设起点是v0 终点为是v1
p[v1][0] = V[v0]
步骤:
1 在没有求出最短路径的各个顶点里面找最小值,找到的这个最小值一定是起点到这个终点
的最短路径值
s[n] == 0的时候的d[n]的最小值 -> 它的最小值为min 下标为minindex
2 标记第1步找出来的那个最小值下标的s为1
补齐到达点
s[minindex] = 1 -> 说明 起点 到V[minindex]的最短路径已经求出来了
3 minindex去更新没有求出最短路径里面的路径值
如果发现通过minindex能够缩短d[n],那么我就找出一个更优的解
那么我就要把你更新
循环着三步就会得到最优解
保存路径我们还有更简单的方式 --- 保存它的前驱就可以了
前驱有前驱....因此递归到起点就出全部的路径
//需要三个向量
int Dijk_s[VMaxNum];//标记是不是求出最短路径
int Dijk_d[VMaxNum];//最短路径值
char Dijk_p[VMaxNum][VMaxNum];//路径
int qianqu[VMaxNum];//保存前驱节点
//v0->w通过前驱给构建出来
void Printqianqu(Graph * g,int v0,int w)
{
if(w == v0)
{
printf("%c ",g ->_V[v0]);//打印起点
return;
}
//先以相同的方式找它的前驱再打印
Printqianqu(g,v0,qianqu[w]);
printf("%c ",g ->_V[w]);
}
//这个是我v0到各个顶点的最短路径 如果你想要到某一个终点就传进来,到这个终点就可以停下来了
static void Dijkstra_shixian(Graph * g,int v0)
{
if(!g || v0 < 0 || v0 > g ->_vexnum)
return;
//初始化所有的向量
for(int i = 0;i < g ->_vexnum;i++)
{
Dijk_s[i] = (i == v0 ? 1 : 0);//除了起点其它的都是没有求出来的
Dijk_d[i] = g ->_R[v0][i];//初始化都是起点到这个点的直接距离
Dijk_p[i][0] = g ->_V[v0];//初始化的时候只有起点
}
for(int n = 1;n < g ->_vexnum;n++)//弄n - 1次 所有的都会出来
{
//1 在没有求出最短路径的各个顶点里面找最小值,找到的这个最小值一定是起点到这个终点
//的最短路径值
int min_d = VERYBIG;//保存最小值
int minindex = -1;//保存最小值的下标
for(int i = 0;i < g ->_vexnum;i++)
{
//s[n] == 0的时候的d[n]的最小值 -> 它的最小值为min 下标为minindex
if(Dijk_s[i] == 0)
{
if(min_d > Dijk_d[i])//找到一个更小的
{
min_d = Dijk_d[i];
minindex = i;
}
}
}
//2 标记第1步找出来的那个最小值下标的s为1
Dijk_s[minindex] = 1;
//补齐到达点
Dijk_p[minindex][strlen(Dijk_p[minindex]) + 1] = 0;
Dijk_p[minindex][strlen(Dijk_p[minindex])] = g ->_V[minindex];
//char buf[3] = {0};
//buf[0] = g ->_V[minindex];
//strcat(Dijk_p[minindex],buf);
//s[minindex] = 1 -> 说明 起点 到V[minindex]的最短路径已经求出来了
//3 minindex去更新没有求出最短路径里面的路径值
//如果发现通过minindex能够缩短d[n],那么我就找出一个更优的解
//那么我就要把你更新
for(int i = 0;i < g ->_vexnum;i++)
{
if(Dijk_s[i] == 0)
{
if(Dijk_d[i] > min_d + g ->_R[minindex][i])
{
Dijk_d[i] = min_d + g ->_R[minindex][i];//更新更优的
strcpy(Dijk_p[i],Dijk_p[minindex]);//拷贝路径
qianqu[i] = minindex;//更新i的前驱节点
}
}
}
}
//打印最短路径值与路径
for(int i = 0;i < g ->_vexnum;i++)
{
printf("%s : %d\n",Dijk_p[i],Dijk_d[i]);
}
//通过前驱打印出路径
for(int i = 0;i < g ->_vexnum;i++)
{
printf("前驱:");
Printqianqu(g,v0,i);
printf("\n");
}
}
void Dijkstra(Graph * g,char v0)
{
Dijkstra_shixian(g,GetVIndex(g,v0));
}
//弗洛伊德算法求最短路径 可以在负权里面使用 迪杰斯特拉算法不能有负权
void Floyd(Graph * g)//由于一直要更新他们的关系 因此我们需要做一个备份
{
int R[VMaxNum][VMaxNum];
memcpy(R,g ->_R,sizeof(R));
//如果从i到j能通过k更优,那么我就更新你,找到所有的k 剩下的就是最优
//i -> j R[i][j]
for(int k = 0;k < g ->_vexnum;k++)//中间点
{
for(int i = 0;i < g ->_vexnum;i++)//起点
{
for(int j = 0;j < g ->_vexnum;j++)//终点
{
if(i == j)//自己到自己
continue;
if(R[i][j] > R[i][k] + R[k][j])
{
R[i][j] = R[i][k] + R[k][j];
}
}
}
}
for(int i = 0;i < g ->_vexnum;i++)
{
for(int j = 0;j < g ->_vexnum;j++)
{
if(R[i][j] == VERYBIG)
printf("\\ ");
else
printf("%d ",R[i][j]);
}
printf("\n");
}
}
连通图:
无向图:任意的两点都是可以连通的(能到达,不一定得直连),这种图我们就叫连通图
有向图: 强连通图:任意的两点都是可以连通的,你能到我,我也可以到你
弱连通图:任意的两点(谁是起点都可以)都是可以连通的,我能到你就可以了
连通分量:在一个图里面,极大连通子图为它的连通分量
连通图的连通分量只有一个--就是它自己
一个图最多有 顶点个数 个连通分量
相邻矩阵:描述一个点到另外一个点有多少情况能到的可能
见图
//输入格式
ABCDEFG ->所有的顶点元素
AB3 ->边以及权值
BC5
...
##-1退出
eg:
ABCDEFGHIJKLMN
AB12
AC16
AD7
AE21
BF5
CF6
CG3
DG5
EI15
EM11
FH4
GH9
GI27
HJ24
HL9
IL10
IK23
IM6
IN5
JL14
JK8
KN16
MN12
##-1