
deepseek回答记录
文章平均质量分 75
溯源006
以出世之心,行入世之事。躬耕于人工智能领域,特别是热衷于通用人工智能。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
torch.concat用法
torch.concat(即torch.cat)是PyTorch中用于拼接张量的关键函数。它沿指定维度连接多个形状匹配的张量,要求除拼接维度外其他维度必须相同。示例展示了0维(行拼接)和1维(列拼接)的操作,以及三维张量的拼接。使用时需注意形状匹配和禁止空张量,与torch.stack的区别在于是否新增维度。该函数适用于特征合并或批量数据处理等场景。正确应用需确保非拼接维度的一致性。原创 2025-06-23 16:39:34 · 421 阅读 · 0 评论 -
tokenizer的apply_chat_template
摘要:tokenizer.apply_chat_template是Hugging Face Transformers库中处理对话数据的方法,将聊天消息转换为模型输入格式。当参数设置为tokenize=False, add_generation_prompt=True时,会输出格式化字符串并在末尾添加模型生成标记(如Mistral模型的\n<|im_start|>assistant\n)。该方法支持不同模型的特定模板(如ChatML/LLAMA2格式),自动处理对话轮次,特别适用于交互场景。使用时原创 2025-06-23 10:16:55 · 1352 阅读 · 0 评论 -
deepseek问答记录:请讲解一下transformers.HfArgumentParser()
Hugging Face Transformers库中的HfArgumentParser是一个专为机器学习任务设计的命令行参数解析器,它通过dataclass简化了复杂参数的配置管理。该工具能够自动从数据类生成命令行参数,支持多来源解析(命令行、环境变量、配置文件),并与Transformers生态无缝集成。使用流程包括定义数据类、创建解析器、解析参数三个步骤。相比传统argparse,它具有代码简洁、类型安全、模块化强等优势,特别适合管理NLP任务中的模型、数据和训练参数,大幅提升了配置管理的效率和可靠性原创 2025-06-02 10:35:12 · 957 阅读 · 0 评论 -
deepseek问答:torch.full() 函数详解
摘要:torch.full()是PyTorch中用于创建指定形状且所有元素值相同的张量的核心函数。其参数包括大小、填充值、数据类型等,支持灵活控制张量属性。该函数在深度学习中有广泛应用,如初始化张量、创建掩码和特殊数据结构等。与torch.ones()、torch.zeros()等类似函数相比,它允许自定义填充值。使用时需注意数据类型推断、内存优化和梯度处理等细节。torch.full()比NumPy的np.full()更优化,支持GPU加速和自动微分,是PyTorch张量操作的重要工具。原创 2025-05-31 09:51:31 · 789 阅读 · 0 评论 -
deepseek问答记录:请讲解一下torch.full_like()
torch.full_like()是PyTorch中用于创建与输入张量形状相同但所有元素填充为指定值的函数。它继承输入张量的形状,允许通过参数控制数据类型、设备等属性。主要特点包括:形状继承性、全同填充、灵活的参数设置(如dtype、device)。与torch.full()等类似函数相比,它无需手动指定尺寸。典型应用包括初始化掩码、转换数据类型和准备梯度计算。使用时需注意数据类型兼容性和内存格式问题。该函数不修改原张量,总是返回新张量,适用于深度学习中的各种张量初始化场景。原创 2025-05-30 17:02:42 · 1113 阅读 · 0 评论 -
deepseek问答记录:请讲解一下hugingface transformers中的AutoProcessor
Hugging Face Transformers库中的AutoProcessor是一个自动化工具,用于加载与预训练模型配套的处理器,简化了多模态模型(如文本、图像、音频)的预处理流程。它能够根据模型名称或路径自动推断并加载相应的处理器(如分词器、特征提取器等),支持多种输入类型,并兼容Hugging Face模型库中的各类模型。AutoProcessor通过from_pretrained()方法加载处理器,并使用__call__方法处理输入,返回适合模型推理的张量格式。其优势在于代码简洁、灵活性高,但需注原创 2025-05-16 19:36:28 · 769 阅读 · 0 评论 -
huggingface transformers中Dataset是一种什么数据类型
Hugging Face的datasets库中的Dataset对象是一个高效、灵活的数据容器,专为机器学习任务设计,尤其适用于自然语言处理。它基于Apache Arrow格式,支持内存映射和零拷贝读取,能够处理大型数据集。Dataset提供类字典接口,支持惰性操作与缓存,并能与深度学习框架无缝集成。通过load_dataset加载数据后,可以使用map方法进行预处理,并通过set_format转换为模型输入格式,直接用于训练。相比pandas.DataFrame和Python列表/字典,Dataset在内存原创 2025-05-13 22:08:07 · 583 阅读 · 0 评论 -
【DeepSeek问答记录】请结合实例,讲解一下pytorch的DataLoader的使用方法
PyTorch的DataLoader是处理批量数据、并行加载和自动打乱的核心工具。本文通过实例详细讲解了DataLoader的基础使用流程,包括自定义数据集类、创建DataLoader实例以及遍历数据。结合实际场景,展示了如何在图像分类任务中使用DataLoader加载CIFAR10数据集,并进行训练循环。文章还深入解析了关键参数如batch_size、shuffle、num_workers等,并提供了处理非对齐数据的自定义collate_fn方法。此外,还介绍了性能优化技巧,如预加载数据、多进程优化和混合原创 2025-05-12 17:45:13 · 535 阅读 · 0 评论 -
pytorch中不同的mask方法:masked_fill, masked_select, masked_scatter
在 PyTorch 中,和是三种常用的掩码(mask)操作方法,它们通过布尔类型的掩码张量(mask)对原始张量进行条件筛选或修改。原创 2025-03-30 11:09:15 · 662 阅读 · 0 评论 -
huggingface datasets库中的load_dataset方法-------deepseek问答记录
传入本地数据集生成脚本的路径(需符合。原创 2025-03-24 19:11:18 · 1619 阅读 · 0 评论 -
python中的lambda表达式,python中的map和filter函数的用法-------deepseek问答记录
条件判断(返回两个数中的较大值)print(max_value(5, 8)) # 输出 8与普通函数的区别特性lambda 表达式普通函数 (def)名称匿名(无函数名)有函数名代码复杂度仅限单个表达式,无语句(如循环、赋值)可包含任意复杂代码块可读性适合简单逻辑适合复杂逻辑复用性通常一次性使用可重复调用注意事项避免滥用:复杂逻辑应使用def定义普通函数,保证代码可读性。变量作用域。原创 2025-03-24 17:04:49 · 650 阅读 · 0 评论 -
现代控制理论与传统的自动控制理论的内容的不同在哪里?模糊控制属于经典控制算法还是现代控制算法?------Deepseek问答记录
传统控制理论侧重于。原创 2025-03-24 09:47:43 · 912 阅读 · 0 评论 -
【deepseek-r1问答记录】transformers库如何加载预训练大模型,然后加载预训练的参数,然后修改其中的部分网络结构,然后重新训练,以qwen2-2B-VL为例
例如,如果用户想修改文本解码器的某一层,可能需要通过遍历模型的子模块并替换相应的层。此外,针对qwen2-2B-VL这个模型,可能需要特定的处理,比如视觉特征的提取部分如何与文本部分结合,是否需要调整图像处理的分辨率或通道数等。嗯,用户的问题是关于如何使用transformers库加载预训练的大模型,比如qwen2-2B-VL,然后加载预训练参数,修改部分网络结构,再进行重新训练。最后,提醒用户在实际操作中可能遇到的挑战,比如需要大量的计算资源,修改结构后模型性能的变化,以及如何调试和验证修改是否有效。原创 2025-03-03 14:03:15 · 1105 阅读 · 0 评论 -
遥感图像重建相关deepseek问答记录
这些任务旨在提升遥感图像的质量和信息量,便于后续分析和应用。原创 2025-02-20 10:21:20 · 875 阅读 · 0 评论 -
ollma有哪些命令------deepseek问答记录
查看完整的命令列表和详细说明。如果有特定需求(如自定义模型),可以参考官方文档或社区资源。Ollama 的命令设计简洁易用,涵盖了模型的下载、运行、管理、自定义等操作。Ollama 提供了一系列命令来管理和使用模型。原创 2025-02-18 09:18:20 · 1003 阅读 · 0 评论 -
请解释一下Standford Alpaca格式、sharegpt数据格式-------deepseek问答记录
Stanford Alpaca 格式通过结构化的指令、输入和输出,简化了模型训练和评估,适用于多种NLP任务。原创 2025-02-17 20:28:14 · 849 阅读 · 0 评论 -
在conda虚拟环境中安装jupyter lab-----deepseek问答记录
通过以上步骤,你可以在 Conda 虚拟环境中成功安装并运行 Jupyter Lab。原创 2025-02-17 20:25:20 · 430 阅读 · 0 评论 -
在conda虚拟环境中安装jupyter lab-----deepseek问答记录
通过以上步骤,你可以在 Conda 虚拟环境中成功安装并运行 Jupyter Lab。原创 2025-02-17 11:30:31 · 500 阅读 · 0 评论 -
记录重要问题:unbuntu系统已经手动安装了cuda tookit,还需要conda install cudatookit 吗-----deepseek 问答
在 Ubuntu 系统中,如果你已经手动安装了 CUDA Toolkit(例如通过 NVIDIA 官方安装包或系统包管理器安装),是否还需要通过 Conda 安装。如果以上条件都满足,你可以直接使用系统安装的 CUDA Toolkit,而不需要通过 Conda 安装。取决于你的具体使用场景和需求。通过 Conda 安装。如果你满足以下条件,如果你遇到以下情况,原创 2025-02-17 09:39:16 · 1068 阅读 · 0 评论 -
关于AutoTokenizer.from_pretrained-----deepseek的回答
是一个非常方便的工具,可以轻松加载和使用各种预训练模型的 tokenizer,适用于多种 NLP 任务。原创 2025-02-12 21:16:03 · 640 阅读 · 0 评论