题目链接:https://vjudge.net/contest/477404#problem/I
题面:
思路:首先我们得明白动态规划问题的重点:无后效性和最优子结构。
观察题目问的问题:在路标移除量不超过k的情况下,求两点间最短的距离。
我们知道动态规划易于处理确切的问题,而题干中的不超过k却是一个模糊的概念。为此,我们可以把问题转化成在路标移除量为x(x ∈[1,k])的情况下,两点间最短的距离,然后再从其中选一个最短的距离。
下面则是考虑如何实现。
再实现动态规划的过程中,我们应该注意区分阶段,状态和决策之间的关系,三者应该按照从外向内的顺序依次循环。
这道题,三者区分不是很明显,在这里我提供一种思路。
f[i][j]表示到点 i ,移除了 j 个标记;
阶段为第 i (i ∈[0,n) )个点
状态则为到点 i 已经移除了 j 个标记,所以 j ∈ [0,min(i,m) ];这里m表示题干中的k;
决策则是枚举剩余可以移除的标记;pos表示从 i 点出发移除路标可以到达的点,在枚举过程中更新到该点的距离。(不一定在本次循环中更新)
另外要注意的就是,最开始应该把边界处理了,即f[0][i] = 0(i ∈ (0,m])
具体参考代码实现
AC代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 500;
int a[N + 5], d[N + 5], f[N + 5][N + 5];
int n, l, m, ans;
int main(){
scanf("%d%d%d", &n, &l, &m);
for(int i = 0; i < n; ++i) scanf("%d", &d[i]);
for(int i = 0; i < n; ++i) scanf("%d", &a[i]);
memset(f, 0x3f, sizeof(f));
f[0][0] = 0; d[n] = l;
for(int i = 1; i <= n; ++i){
//f[i][0] = f[i - 1][0] + (d[i] - d[i - 1]) * a[i - 1];
f[0][i] = 0;
}
for(int i = 0; i < n; ++i){
for(int j = 0; j <= min(m, i); ++j){
for(int k = 0; k + j <= m; ++k){
int pos = i + k + 1, u = j + k;
if(pos <= n){
f[pos][u] = min(f[pos][u], f[i][j] + (d[pos] - d[i]) * a[i]);
//printf("f[%d][%d] = %d\n", pos, u, f[pos][u]);
}
}
}
}
ans = f[n][0];
for(int i = 1; i <= m; ++i)
ans = min(ans, f[n][i]);
printf("%d\n", ans);
//system("pause");
return 0;
}
}```