非线性自回归神经网络在短期太阳辐射预测中的应用
1. 研究背景与目标
预测光伏系统的能源产量,关键在于准确预测全球水平太阳辐照度(GHI)。而GHI的预测需要处理时间序列信息,这能帮助我们理解数据背后的驱动因素和结构,还能用于模型拟合、预测、监测以及控制。
本次研究旨在通过使用一组回归因子进行预测,显著降低预测误差。我们的目标是通过增加难度级别来更好地优化神经网络架构,利用更复杂、更大的数据集,对未来15分钟至2小时的短期太阳辐射进行更精准的预测,并将其应用于估算光伏能源产量。
2. 方法论
2.1 多层感知器(MLP)
在预测领域,神经网络是一种非常有效的方法,尤其是在处理时间序列系统时,多层感知器(MLP)表现出色。MLP由输入层、一个或多个隐藏层和输出层组成,是一种前馈架构,各层之间完全连接,连接单元的参数为权重,每个神经元计算加权输入之和的函数,即激活函数。
在本次研究中,我们使用了两种不同的MLP网络架构,都具有一个使用双曲正切激活函数$f$的隐藏层和一个使用线性激活函数$F$的输出层。其功能模型如下:
$\hat{y} i(w, W) = F_i(\sum {j=1}^{q} W_{ij}h_j + W_{i0}) = F_i(\sum_{j=0}^{q} W_{ij}f_j(\sum_{l=1}^{m} w_{jl}u_l + w_{j0}) + W_{i0})$
权重由矩阵$W = [W_{ij}]$和$w = [w_{jl}]$指定,对应的偏置为$W_{i0}$和$w_{j0}$,这些权重被矢量化为向量$\theta$。输入单元由向量$u(t)