2、非线性自回归神经网络在短期太阳辐射预测中的应用

非线性自回归神经网络在短期太阳辐射预测中的应用

1. 研究背景与目标

预测光伏系统的能源产量,关键在于准确预测全球水平太阳辐照度(GHI)。而GHI的预测需要处理时间序列信息,这能帮助我们理解数据背后的驱动因素和结构,还能用于模型拟合、预测、监测以及控制。

本次研究旨在通过使用一组回归因子进行预测,显著降低预测误差。我们的目标是通过增加难度级别来更好地优化神经网络架构,利用更复杂、更大的数据集,对未来15分钟至2小时的短期太阳辐射进行更精准的预测,并将其应用于估算光伏能源产量。

2. 方法论
2.1 多层感知器(MLP)

在预测领域,神经网络是一种非常有效的方法,尤其是在处理时间序列系统时,多层感知器(MLP)表现出色。MLP由输入层、一个或多个隐藏层和输出层组成,是一种前馈架构,各层之间完全连接,连接单元的参数为权重,每个神经元计算加权输入之和的函数,即激活函数。

在本次研究中,我们使用了两种不同的MLP网络架构,都具有一个使用双曲正切激活函数$f$的隐藏层和一个使用线性激活函数$F$的输出层。其功能模型如下:
$\hat{y} i(w, W) = F_i(\sum {j=1}^{q} W_{ij}h_j + W_{i0}) = F_i(\sum_{j=0}^{q} W_{ij}f_j(\sum_{l=1}^{m} w_{jl}u_l + w_{j0}) + W_{i0})$

权重由矩阵$W = [W_{ij}]$和$w = [w_{jl}]$指定,对应的偏置为$W_{i0}$和$w_{j0}$,这些权重被矢量化为向量$\theta$。输入单元由向量$u(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值