lake5
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
41、公共交通网络中乘客起终点调查系统解析
本文详细解析了一个用于公共交通网络中乘客起终点调查的系统,涵盖了数据处理、记录验证、控制模块、虚假网络广告策略、数据收集器设计、服务器架构、网页界面展示以及数据分析流程等多个方面。系统通过收集和分析乘客设备的Wi-Fi帧数据,识别乘客的上下车站点,最终生成用于交通规划的起终点(OD)矩阵。文章还介绍了数据验证算法、设备分类机制以及如何通过多模块协作实现高效的数据采集与处理。原创 2025-07-25 05:14:59 · 17 阅读 · 0 评论 -
40、交通出行时间建模与乘客出行起终点调查
本博客探讨了交通出行时间建模与乘客出行起终点调查的相关研究。在出行时间建模方面,提出了基于线性回归混合的模型,能够有效捕捉出行时间的随机性质,并提供可靠性信息。通过直观检查与数据分析,验证了模型的有效性。同时,研究还提出了一种基于Wi-Fi技术的系统,用于间接收集公交乘客的出行起终点数据。该系统通过捕获设备的MAC地址和GPS信息,生成乘客路线记录,并通过过滤策略减少假阳性和假阴性问题。测试结果显示,该系统能够高效收集乘客OD信息,为公共交通服务优化提供支持。研究总结了当前模型与系统的成果与局限,并展望了未原创 2025-07-24 13:06:29 · 19 阅读 · 0 评论 -
39、交通出行时间预测的概率建模方法
本文介绍了一种基于线性回归混合模型的交通出行时间预测概率建模方法。该方法结合了历史数据和实时交通信息,通过期望最大化(EM)算法进行参数估计,能够更准确地预测不同交通状况下的出行时间。文章还探讨了出行时间可靠性建模,通过将混合比例建模为预测变量的函数,提供拥堵和自由流的概率以及相应的出行时间估计。实验结果表明,对数正态模型在预测准确性和预测变量数量方面优于正态模型,所提出的方法能够为旅行者提供更可靠的出行时间信息。原创 2025-07-23 09:55:57 · 17 阅读 · 0 评论 -
38、交通相关数据预测与建模技术研究
本博文围绕智能交通系统中的两个关键问题——蜂窝网络带宽预测和基于时空速度变化的概率旅行时间建模展开研究。通过分析Android与MobileInsight数据的特征,比较不同训练策略和算法性能,探讨了本地化与全球化训练对预测准确性的影响。同时,提出了混合线性回归模型用于旅行时间建模,并分析了其在实际交通数据中的应用效果。研究进一步揭示了两者的关联性,并为未来智能交通系统的优化与发展提供了方向。原创 2025-07-22 10:47:27 · 19 阅读 · 0 评论 -
37、增强型蜂窝带宽预测助力高度自动化驾驶
本文探讨了增强型蜂窝带宽预测在高度自动化驾驶中的应用,重点研究了通过引入底层网络信息(如载波聚合、MIMO和CQI)提升预测准确性。使用基于安卓API和MobileInsight的测量工具链,结合随机森林回归算法,对德国三家运营商的LTE网络进行了实地测试与分析。研究展示了新特征的重要性,并通过R²指标验证了预测性能的提升。此外,文章还讨论了未来研究方向,包括深度学习的应用和跨网络融合的可能性,为智能物流、远程医疗等领域的网络优化提供了参考。原创 2025-07-21 10:04:02 · 10 阅读 · 0 评论 -
36、高度自动化驾驶的增强型蜂窝带宽预测
本文探讨了如何通过增强型蜂窝带宽预测方法,提高高度自动化驾驶车辆的网络连接可靠性。研究结合了更精确的底层协议信息和本地化训练数据,利用机器学习算法(如随机森林分类树)提升预测准确性,同时通过免费开源工具实现成本控制。实验在德国A60高速公路进行,验证了新方法在真实场景中的有效性。未来工作将探索更多数据来源、实时预测和跨网络技术应用。原创 2025-07-20 15:02:37 · 7 阅读 · 0 评论 -
35、分布式信息质量感知技术解析
本文深入解析了分布式信息质量感知技术,重点讨论了决策过程中原始消息与聚合消息的使用差异,以及聚合消息老化误差的估计方法。文章还详细介绍了客户端(车辆)在推送与拉取策略下的信息管理流程,并通过仿真实验评估了不同方法在决策准确性、鲁棒性和适应性方面的表现。研究结果表明,分布式决策方法在多种环境下均具有优异性能,尤其是在服务器缓存受限和传感器精度变化的情况下表现突出。最后,文章提出了未来可能的优化方向,包括缓存消息选择机制和更多智能决策策略的探索。原创 2025-07-19 09:51:18 · 10 阅读 · 0 评论 -
34、分布式信息质量感知与车辆网络决策优化
本文探讨了车辆网络中分布式信息质量感知与决策优化的方法。通过分析错误决策的总成本,提出了一种基于信息质量的多数投票决策机制,并引入影响函数 $f_b(t)$ 来衡量消息的效用。同时,结合拉取模式和推送模式的信息传播策略,优化了服务器端资源管理与信息分发机制。文章还讨论了元信息在决策中的重要性,并提出了模式转换策略以适应不同场景下的资源限制和交通状况。实验表明,该方法在提升决策准确性、资源利用率和适应速度方面具有显著优势,为车辆网络的安全与高效运行提供了有效支持。原创 2025-07-18 11:47:41 · 8 阅读 · 0 评论 -
33、车载网络中分布式信息质量感知决策
本文提出了一种车载网络中分布式信息质量感知决策方法。该方法结合信息质量评估、推式和拉式通信的混合策略,以及服务器端缓存的利用,提高了决策的质量和适应性,同时降低了网络负载。通过科隆市交通拥堵场景的评估,验证了该方法在复杂交通环境中的有效性,显著提升了决策质量并减少了网络流量。原创 2025-07-17 16:47:19 · 7 阅读 · 0 评论 -
32、城市级基于代理的交通网络多模式建模
本文介绍了一种城市级基于代理的多模式交通网络建模方法,重点分析了战略路由和战术路由的功能及其实现机制,并通过洛杉矶地区的实际案例验证了系统的有效性。该模型利用微观和中观交通模拟,结合生态路由策略,能够实现对交通拥堵、延误和燃油消耗的优化管理。尽管受控车辆比例较低,但实验结果表明,该系统在减少延误和燃油消耗方面具有显著潜力。文章还探讨了未来的发展方向,包括提高模拟速度、增强系统可扩展性以及引入智能化决策机制。原创 2025-07-16 09:09:53 · 9 阅读 · 0 评论 -
31、城市级基于代理的多模式交通网络建模
本文详细介绍了一种城市级基于代理的多模式交通网络建模框架,涵盖行程定义、网络垂直与空间划分、旅行者类型、系统架构及关键组件等内容。该框架结合微观和中观模拟方法,支持多种交通模式,具有高精度、可扩展性和动态性等优势。适用于交通规划、管理和环境评估等领域,并探讨了其未来发展方向和面临的挑战。原创 2025-07-15 09:13:52 · 9 阅读 · 0 评论 -
30、城市级基于代理的多模式交通网络建模:创新框架与实践探索
本文介绍了一种创新的城市级基于代理的多模式交通网络建模框架INTGRAT3,该框架结合微观和中观模拟技术,实现了大规模交通系统的高效与高精度建模。通过空间分区和垂直分区技术,INTGRAT3支持并行模拟,能够逐秒跟踪个体出行者的行程,涵盖汽车、公交车、铁路、步行、自行车和拼车等多种交通方式。研究以大洛杉矶地区为例,验证了INTGRAT3在减少交通拥堵和降低燃油消耗方面的显著效果。此外,文章还探讨了INTGRAT3的技术优势、应用前景及未来研究方向,为城市交通管理和规划提供了新的工具和思路。原创 2025-07-14 10:37:35 · 13 阅读 · 0 评论 -
29、天气和拥堵密度调优的网络周边控制器的实现与研究
本文研究了基于天气和拥堵密度调优的网络周边控制器,通过模拟实验对比了不同控制策略(无控制NPC、标准周边控制器PC、天气调优控制器WTPC和拥堵密度调优控制器JTPC)在不同天气条件和拥堵密度下的性能表现。研究发现,WTPC在恶劣天气下显著改善交通性能,而JTPC在拥堵密度较低时能更有效地缓解交通拥堵。最终提出了根据天气和拥堵密度选择合适控制策略的应用建议,并指出了未来研究的方向。原创 2025-07-13 12:13:12 · 11 阅读 · 0 评论 -
28、车辆相机迭代校准评估
本文提出了一种基于交通标志尺度参考信息的车辆相机迭代校准方法。通过数据采集、交通标志检测、形状拟合、尺度参考提取及迭代校准流程,评估了相机内参的变化情况。实验表明,该方法能够在实际道路场景中有效估计相机的内参,尤其在主点估计方面表现出较高的灵敏性。同时,交通标志和道路标记的参考点分布可相互补充,提高校准效果。原创 2025-07-12 11:03:54 · 13 阅读 · 0 评论 -
27、车辆相机迭代校准评估
本文介绍了一种基于交通标志尺度参考信息的车辆相机迭代校准方法。针对相机内参可能随时间变化的问题,提出了结合初始校准和道路场景中交通标志信息的迭代校准流程。通过卷积神经网络实现交通标志检测,并利用椭圆拟合提取形状信息,结合光束法平差更新相机内参。实验结果显示,该方法能够显著提高相机测量精度,具有良好的应用潜力。原创 2025-07-11 11:23:41 · 14 阅读 · 0 评论 -
26、实时超车车辆检测与车辆相机迭代校准方法解析
本文详细解析了一种基于卷积神经网络(CNN)和光流跟踪技术的实时超车车辆检测系统,并介绍了利用交通标志参考信息进行车辆相机迭代校准的方法。检测系统通过像素移动速度计算、CNN分类、重复图案去除、跟踪与行为检测等步骤,能够在城市交通、高速公路及夜间道路等多种场景下实现高准确率的超车识别。相机校准部分则利用交通标志的标准化信息,有效提升了车辆相机在行驶过程中的测量精度和稳定性。这些技术对于提升智能驾驶系统的安全性和性能具有重要意义。原创 2025-07-10 16:13:57 · 9 阅读 · 0 评论 -
25、基于光流和卷积神经网络的实时超车车辆检测
本文提出了一种基于Lucas-Kanade光流算法和深度卷积神经网络(CNN)的实时超车车辆检测系统。该系统使用安装在车辆后部的单目摄像头,结合光流分析和深度学习技术,实现了对盲区超车车辆的快速准确检测,以帮助驾驶员安全变道,减少交通事故。系统主要包括预处理和分割、CNN车辆识别、重复模式去除以及跟踪和行为检测四个部分。实验结果表明,该系统在白天和夜晚的不同道路场景中均具有较高的检测准确率和较低的误报率,具备良好的实时性和实用性。原创 2025-07-09 11:24:03 · 9 阅读 · 0 评论 -
24、基于高分辨率雷达的静态环境感知与自由空间检测
本博客主要介绍了基于高分辨率雷达的静态环境感知与自由空间检测方法。通过在车辆周围安装三个雷达(前中央、前右角和后右角雷达),采用低层数据融合方法,将雷达原始数据结合生成占用栅格地图,从而实现对车辆周围环境的稳定建模。自由空间检测部分包括栅格单元占用状态的确定、二进制栅格单元聚类、边界识别以及基于区间的自由空间模型构建。关键技术涵盖CCL聚类算法、Moore-邻居追踪(MNT)边界识别算法和Bresenham线算法等,有效提升了雷达环境感知的精度和可靠性。此外,还探讨了该技术在停车场、公共道路和复杂路口等场景原创 2025-07-08 13:14:21 · 11 阅读 · 0 评论 -
23、基于高分辨率雷达的静态环境感知技术解析
本文详细解析了基于高分辨率雷达的静态环境感知技术,重点介绍了后验概率的对数赔率比计算、占用栅格地图的构建方法以及自由空间检测的实现。通过雷达数据和车辆运动模型的结合,构建了能够准确反映周围静态环境的栅格地图,并探讨了如何优化检测概率和后验概率的计算方法。此外,还提出了针对雷达数据噪声和不确定性的自由空间检测优化策略。该技术为车辆的安全行驶和智能决策提供了可靠支持。原创 2025-07-07 11:09:10 · 7 阅读 · 0 评论 -
22、多领域联合仿真生态系统与高分辨率汽车雷达静态环境感知
本文探讨了多领域联合仿真生态系统和高分辨率汽车雷达静态环境感知技术在先进驾驶辅助系统(ADAS)研发中的应用。多领域联合仿真生态系统通过整合多种工具和技术,实现了接近实时的仿真速度,使开发者能够更好地参与虚拟测试驾驶过程。同时,高分辨率雷达的静态环境感知技术通过新颖的占用网格映射方法和自由空间检测算法,能够准确感知车辆周围的环境,为车辆的安全行驶提供支持。文章还分析了不同系统配置下的性能差异,并展望了未来在高度自动化驾驶领域的发展方向。原创 2025-07-06 16:44:44 · 11 阅读 · 0 评论 -
21、多域协同仿真生态系统助力ADAS快速原型开发
本文介绍了基于多域协同仿真生态系统的ADAS快速原型开发方案。通过构建具有汽车特色的虚拟平台(VP),结合实时操作系统ERIKA Enterprise,并利用工具耦合FMU和FMI标准,实现了ADAS算法从Simulink模型到嵌入式代码的高效集成与闭环测试。系统支持裸机软件和RTOS任务的不同抽象层级开发,并通过车道保持辅助(LKA)和自动变速器控制(ATC)等典型应用验证了其功能和实时性能。该系统能够在几分钟内完成完整的设计探索周期,显著提升了ADAS开发效率。原创 2025-07-05 14:53:22 · 9 阅读 · 0 评论 -
20、用于全虚拟快速ADAS原型设计的多域协同仿真生态系统
本文提出了一种用于全虚拟快速ADAS原型设计的多域协同仿真生态系统。通过结合基于模型的设计工具、驾驶模拟器、虚拟平台以及多域协同仿真技术,克服了现有工具在ADAS开发中的局限性。该系统利用FMI标准实现工具间的互连与协同,支持逼真的虚拟环境、非功能建模以及近实时的全系统仿真,从而加速ADAS的设计、验证与优化过程。原创 2025-07-04 12:38:33 · 9 阅读 · 0 评论 -
19、汽车事故检测与重建:基于声音分析的创新方案
本文提出了一种基于声音分析的汽车事故检测与重建创新方案。通过构建包含多种声音类型的数据集,利用时间-频率域和频谱图图像分类器(基于随机森林)进行声音分类,并结合两者的优势提高整体检测准确率。研究还评估了模型在不同噪声环境下的性能,探讨了频谱图参数调整对分类准确性的影响,并提出了基于声音源定位的事故重建方法。该方案具有低成本、高可靠性的特点,可应用于汽车安全、车联网、智能家居等多个领域。原创 2025-07-03 09:42:20 · 8 阅读 · 0 评论 -
18、基于声音分析的汽车事故检测与重建
本文介绍了一种基于声音分析的汽车事故检测与重建方法。通过结合时间和频率分析模型以及频谱图图像分析模型,该方法利用声音特征检测事故并进行事故重建,无需额外的专业硬件安装,具有成本低、部署广的优势。文章详细阐述了系统设计、模型构建、数据集以及评估结果,并讨论了该方法在不同环境下的性能表现与未来优化方向。原创 2025-07-02 10:19:21 · 9 阅读 · 0 评论 -
17、无缝出行信息系统开发与汽车事故声音检测创新方案
本文探讨了无缝出行信息系统与汽车事故声音检测两大创新方案。在出行领域,通过开发开放出行平台的参考模型,解决了技术可扩展性和互操作性问题,为整合异构交通服务提供了通用且规范化的系统架构。在汽车安全领域,提出了一种创新的汽车事故检测方法——Crashzam,利用车内声音识别技术,克服了传统加速度计方法的局限性。Crashzam具有广泛的应用前景,包括紧急救援、保险理赔和车辆安全研究等领域。文章还总结了项目开发中的经验教训,强调了跨学科团队合作的重要性,并展望了未来发展方向。原创 2025-07-01 11:05:14 · 8 阅读 · 0 评论 -
16、无缝出行信息系统开发:方法与实践
本文探讨了开发集成旅行信息系统的方法与实践,旨在解决多式联运出行中的复杂性问题。通过对Mobility Broker和Open Mobility Platform(OMP)等项目的分析,介绍了从概念设计、出行服务数字化到系统实现的结构化方法。文章总结了业务策略、用户需求分析和迭代开发的重要性,并提出了未来研究的方向,包括技术创新、跨领域合作和可持续发展,以推动无缝出行体验的发展。原创 2025-06-30 13:18:39 · 10 阅读 · 0 评论 -
15、环境与情境特定因素对热舒适度的影响研究
本研究探讨了办公环境中多个环境和情境特定因素对热舒适度的影响。通过相关性分析、多元线性回归分析、聚类分析以及推断性统计分析,研究发现除了温度和湿度外,光照强度、色温、噪音、活动类型和情绪状态等因素也显著影响用户的热舒适度感知。研究结果为优化办公环境、提高员工舒适度和工作效率提供了重要的理论依据,并为开发新一代智能室内温度控制器奠定了基础。原创 2025-06-29 15:31:38 · 14 阅读 · 0 评论 -
14、办公环境热舒适度影响因素研究
本研究通过为期8周的办公室实地实验,探讨了除温度和湿度外的多种因素对办公环境热舒适度的影响。研究涵盖了光照强度、光颜色、光色温、噪声水平、身体和精神活动、情绪状态以及一天中的时间等因素,并通过描述性统计分析和相关系数分析明确了这些因素与热舒适度之间的关系。基于研究结果,文章提出了针对办公环境优化的具体建议,包括光照调节、噪声控制以及对用户情绪和活动的合理安排,以提升办公人员的舒适度和满意度。原创 2025-06-28 11:26:01 · 9 阅读 · 0 评论 -
13、智能城市中的数据分类与办公环境热舒适度研究
本文探讨了智能城市建设中的两个重要研究方向:一是基于SaaS架构的私有数据分类系统,利用同态加密技术实现隐私保护下的数据处理,并提出了未来的优化方向;二是办公环境热舒适度的影响因素,通过为期8周的实地研究发现噪音、照明、活动类型和情绪状态等情境因素对热舒适度有显著影响。研究结果为智能城市的数据安全处理和办公环境的舒适性优化提供了理论支持与实践指导。原创 2025-06-27 15:45:33 · 11 阅读 · 0 评论 -
12、新型通用加密分类器服务的 SaaS 实现
本文介绍了一种新型通用加密分类器服务的 SaaS 实现,详细阐述了高斯分类器的预测原理以及基于同态加密技术的分类流程。通过 Paillier 和 BGV(基于 HElib 库)两种加密方案的原型实现,比较了它们在数据通信和执行时间方面的性能差异。文章探讨了加密分类器在保护用户数据隐私方面的应用潜力,并提出了参数优化、并行处理等未来优化方向。原创 2025-06-26 14:47:48 · 9 阅读 · 0 评论 -
11、智能能源数据隐私保护分类服务解析
本文探讨了智能能源数据隐私保护分类服务,涵盖相关研究方法、加密数据挖掘技术、同态加密在智能电网中的应用、服务架构设计以及私有分类算法的实现。文章分析了不同方法的优缺点,并提出了基于同态加密的分类算法和架构方案,旨在平衡数据隐私保护与分类性能之间的关系。此外,还展望了未来的研究方向,包括算法优化、多模态数据融合以及实际应用推广,为智能城市的能源管理提供支持。原创 2025-06-25 12:52:02 · 9 阅读 · 0 评论 -
10、智能城市中的能源管理与隐私保护技术
本文探讨了智能城市背景下的能源管理与隐私保护技术。首先,基于cloud.iO架构的测试验证了其在需求侧管理中的可行性,通过加热和锅炉切断测试评估了系统反应性及对家庭能耗的影响。同时,提出了基于同态加密的隐私保护分类服务架构,结合高斯分类器对加密能源数据进行远程分类和标记,确保数据隐私性。文章还分析了同态加密在智能城市多场景中的应用前景及面临的挑战,并提出了相应的解决方案,为未来智能城市的安全可持续发展提供了技术参考。原创 2025-06-24 10:20:14 · 8 阅读 · 0 评论 -
9、云iO:分散式物联网架构解析与应用实践
本文详细解析了云iO分散式物联网架构的设计与在SEMIAH项目中的实际应用。云iO基于开源组件,结合ZigBee技术构建无线家庭局域网(HAN),实现了智能家居设备的集中管理和控制。文章从系统基础架构、框架核心功能、消息交互机制、部署实践、测试结果以及未来展望等多个方面展开分析。尽管在实际部署中面临通信范围限制和用户行为不可预测等挑战,但通过优化和改进,云iO展现了良好的应用潜力。测试结果表明,系统在数据采集、指令响应和容错能力方面基本满足设计需求,未来有望在智能家居及其他物联网领域广泛推广。原创 2025-06-23 09:31:01 · 11 阅读 · 0 评论 -
8、基于模型预测控制的家庭光伏电池系统削峰应用与物联网架构
本文探讨了基于模型预测控制(MPC)的家庭光伏电池系统在削峰填谷方面的应用,以及物联网(IoT)架构在需求响应(DR)中的实际部署。MPC通过优化电池的使用,有效处理天气预测偏差,同时合理选择电池存储容量以最大化经济和运营效益。IoT架构则为能源发电的分散性和不可预测性提供了灵活的解决方案,通过不同的IoT平台类型实现家庭能源消耗的智能控制。文章还分析了相关技术挑战,如计算资源需求、模型不匹配、数据安全与隐私保护等,并提出了相应的解决思路。此外,展望了MPC和IoT在未来家庭能源管理领域的发展趋势,包括多目原创 2025-06-22 13:34:09 · 8 阅读 · 0 评论 -
7、基于MPC的光伏电池系统家庭削峰应用
本文探讨了基于模型预测控制(MPC)的光伏电池系统削峰应用,旨在通过最优控制减少电网功率流的峰值。研究将削峰问题建模为混合整数二次规划(MIQP)问题,并评估了其经济收益与自消费、自给自足能力。实验验证了MPC在处理光伏功率预测不确定性和优化电池充放电方面的有效性,结果显示MPC能够有效降低负载需求峰值,尽管存在一定的控制误差。原创 2025-06-21 14:16:21 · 10 阅读 · 0 评论 -
6、基于模型预测控制的户用光伏电池系统削峰应用
本文提出了一种基于模型预测控制(MPC)的户用光伏电池系统削峰应用方法。该方法通过二次目标函数和系统约束条件,实现光伏和负载需求峰值的同时控制,适用于单一电价场景下的农村配电网小型光伏电池系统。实验结果表明,该策略能够有效提高电池利用率,减少电网压力,为户用光伏系统提供经济有效的解决方案。原创 2025-06-20 14:12:08 · 8 阅读 · 0 评论 -
5、医疗冰柜作为需求响应的灵活负载及MPC在光伏电池系统中的应用
本文探讨了医疗冰柜作为灵活负载在需求响应中的应用,以及模型预测控制(MPC)在光伏电池系统中的优化作用。通过分别优化医疗冰柜的决策变量β和PRES,有效降低了计算时间,提高了光伏利用率和系统性能;同时,MPC的应用能够削减光伏馈入和电网功率的峰值,提升电池使用效率。两者在电力系统优化中展现出相似性和互补性,为提高能源独立性、降低电网压力提供了有效途径。文章还分析了实际应用中的挑战及解决方案,并展望了未来的研究方向。原创 2025-06-19 15:05:15 · 8 阅读 · 0 评论 -
4、医疗冰柜作为需求响应的灵活负载
本博文探讨了将医疗冰柜作为需求响应中的灵活负载,通过优化控制策略实现能源的高效利用。研究结合多物理场模拟和优化工具,分析了医疗冰柜热惯性在时间转移负载中的潜力,并以荷兰的医疗研究设施为案例,验证了需求响应框架的有效性。分别优化冰柜开关信号和光伏发电计划的策略在降低电网依赖、减少电费和削峰方面取得了显著效果,为未来能源管理提供了可行的解决方案。原创 2025-06-18 13:44:47 · 9 阅读 · 0 评论 -
3、智能电网中太阳能辐射预测与需求响应策略
本文探讨了智能电网中两种关键技术:基于非线性自回归神经网络(NAR和NARMA)的太阳能辐射预测方法,以及商业园区微电网中医疗冰柜的需求响应策略。通过ANNs对全球水平辐照度(GHI)进行短期预测,并结合PVsim估算光伏能量生产,提高了太阳能的利用效率。同时,医疗冰柜作为灵活负载,通过多物理需求响应框架优化电网运行,增强了电网稳定性并降低了峰值功率消耗。研究还分析了这两种技术的综合优势、应用前景以及未来发展方向,包括技术改进、市场机制建设与数据安全挑战。原创 2025-06-17 16:41:01 · 15 阅读 · 0 评论 -
2、非线性自回归神经网络在短期太阳辐射预测中的应用
本文研究了非线性自回归神经网络(NAR)和非线性自回归移动平均神经网络(NARMA)在短期全球水平太阳辐照度(GHI)预测中的应用。通过使用包含四年GHI数据的大型数据集,结合Lipschiz方法和设计空间探索,确定了最优的回归因子数量,并利用Levenberg-Marquardt算法训练网络。实验结果表明,NAR和NARMA在1至3个预测步长内能够较好地跟踪真实气象趋势,预测误差较低,适用于光伏能源估算。此外,通过最优脑外科医生(OBS)技术优化网络架构,有效降低了预测误差。研究还探讨了未来改进方向,包括原创 2025-06-16 09:48:15 · 7 阅读 · 0 评论