机器学习数据处理与Vertex AI Workbench全解析
1. 数据存储与转换方案
1.1 嵌入技术
在处理机器学习数据集时,独热编码(One-Hot Encoding)是常用的数据转换方法。然而,当数据集中唯一值数量较多时,独热编码会为每个唯一值创建一个新列,导致数据表示变得非常稀疏。例如,若有一个包含20000个唯一邮政编码的列,独热编码将创建20000个新的二进制列。这种稀疏数据不仅占用大量内存,还会增加机器学习训练的复杂度。
为解决这一问题,可以使用密集嵌入(Dense Embeddings)来处理具有大量唯一值的分类数据列。嵌入通常通过神经网络生成,是一种现成的编码技术。它将分类列中的每个值编码为一个小的实数密集向量。训练和生成这些嵌入的一种简单方法是使用Keras内置的嵌入层。
1.2 GCP上的可扩展数据转换工具
1.2.1 Cloud Data Fusion
Cloud Data Fusion是GCP上的一个完全托管服务,用于快速构建和管理可扩展的数据管道。使用Data Fusion的用户界面(UI),无需编写一行代码,通过可视化的点击界面即可构建和部署数据管道。它提供了数百个预构建的转换,可用于批量和实时数据处理,能快速构建ETL/ELT管道。
Cloud Data Fusion的主要特点如下:
- 可移植性 :基于开源项目CDAP构建,确保数据管道的可移植性。
- 简单集成 :与Google Cloud的功能(如GCS、Dataproc和BigQuery)轻松集成,使开发更快、更安全。 <