15、模型优化与Vertex AI管道部署:NAS与Kubeflow实践

模型优化与Vertex AI管道部署:NAS与Kubeflow实践

在机器学习领域,为了获得最佳性能的模型,模型优化技术至关重要。本文将介绍两种重要的模型优化方法——神经架构搜索(NAS)和超参数调优(HPT),并探讨如何使用Vertex AI Pipelines(托管的Kubeflow管道)来编排机器学习工作流。

1. NAS与HPT的区别

人工神经网络(ANNs)广泛用于解决复杂的机器学习问题,但大多数情况下,这些网络架构是由机器学习专家手动设计的,不一定每次都是最优的。神经架构搜索(NAS)是一种自动化设计神经网络架构的技术,通常优于手动设计的网络。

1.1 HPT与NAS的工作方式

  • HPT :假设给定一个架构,专注于优化超参数以获得最佳模型。优化的超参数包括学习率、优化器、批量大小、激活函数等。
  • NAS :专注于优化特定于架构的参数,自动化设计神经网络架构的过程。优化的参数包括层数、单元数、层间连接类型等。

1.2 NAS的主要组件

NAS通常有三个主要组件:
- 搜索空间 :控制可能考虑的神经网络架构集合。搜索空间通常与问题相关,例如视觉相关问题可能会有卷积神经网络(CNN)层。虽然NAS可以自动识别最佳架构,但仔细设计搜索空间仍依赖于人类专业知识。
- 优化方法 :决定如何在搜索空间中导航以找到给定应用的最佳架构。许多不同的优化方法已应用于NAS,如强化学习(RL)、贝叶斯优化、基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值