模型优化与Vertex AI管道部署:NAS与Kubeflow实践
在机器学习领域,为了获得最佳性能的模型,模型优化技术至关重要。本文将介绍两种重要的模型优化方法——神经架构搜索(NAS)和超参数调优(HPT),并探讨如何使用Vertex AI Pipelines(托管的Kubeflow管道)来编排机器学习工作流。
1. NAS与HPT的区别
人工神经网络(ANNs)广泛用于解决复杂的机器学习问题,但大多数情况下,这些网络架构是由机器学习专家手动设计的,不一定每次都是最优的。神经架构搜索(NAS)是一种自动化设计神经网络架构的技术,通常优于手动设计的网络。
1.1 HPT与NAS的工作方式
- HPT :假设给定一个架构,专注于优化超参数以获得最佳模型。优化的超参数包括学习率、优化器、批量大小、激活函数等。
- NAS :专注于优化特定于架构的参数,自动化设计神经网络架构的过程。优化的参数包括层数、单元数、层间连接类型等。
1.2 NAS的主要组件
NAS通常有三个主要组件:
- 搜索空间 :控制可能考虑的神经网络架构集合。搜索空间通常与问题相关,例如视觉相关问题可能会有卷积神经网络(CNN)层。虽然NAS可以自动识别最佳架构,但仔细设计搜索空间仍依赖于人类专业知识。
- 优化方法 :决定如何在搜索空间中导航以找到给定应用的最佳架构。许多不同的优化方法已应用于NAS,如强化学习(RL)、贝叶斯优化、基