Google Cloud上的ML工作流编排与预测:Vertex AI和Cloud Composer的应用
在机器学习(ML)项目中,工作流编排和模型预测是至关重要的环节。Google Cloud提供了多种工具来帮助我们完成这些任务,其中Vertex AI Pipelines和Cloud Composer是两个常用的工作流编排工具,而Vertex AI则可以用于获取模型的预测结果。本文将详细介绍如何使用这些工具。
1. Cloud Composer:基于Airflow的工作流编排
Cloud Composer是Google Cloud上基于Apache Airflow开源项目构建的工作流编排服务。与Airflow不同的是,Composer是完全托管的,并且能轻松与其他GCP工具集成。它支持在多云和混合环境中编写、执行、调度和监控工作流。Composer管道是以有向无环图(DAG)的形式存在,可使用Python轻松定义和配置。它还拥有丰富的连接器库,能让我们一键部署工作流。在Google Cloud控制台中,工作流的图形化表示使得监控和故障排除变得十分方便,同时DAG的自动同步确保了作业始终按计划执行。
Cloud Composer常用于数据科学家和数据工程师构建复杂的数据管道(如ETL或ELT管道),也可作为ML工作流的编排器。由于Apache项目自带数百个操作符和传感器,它在处理数据相关工作流时非常方便,只需少量代码就能在多个云环境之间进行通信。此外,我们还可以定义失败处理机制,例如在管道失败时发送电子邮件或Slack通知。
1.1 创建Cloud Composer环境
使用Google Cloud控制台UI创建Cloud Compos