利用词嵌入建立单词关系及在情感分类任务中的应用
在自然语言处理中,建立单词之间有意义的关系是一个重要的任务。本文将介绍如何利用词嵌入技术,特别是 word2vec 算法,来建立单词之间的关系,并探讨如何使用预训练的词嵌入模型来提升情感分类任务的效果。
1. word2vec 算法概述
word2vec 算法在建立单词关系时会考虑单词的上下文信息。与之前的算法不同,它更注重基于共享上下文来表达单词之间的相似性。根据 word2vec 的理论,如果两个单词共享相似的上下文,那么它们就更相似,这体现了英国语言学家 John Rupert Firth 的观点:“You shall know a word by the company it keeps”。
例如,我们有一个包含餐厅评论的大型文本语料库,希望基于单词共现的统计信息来建立单词之间类似同义词的关系。我们可以利用这些关系来实现一个编辑工具,在编辑文档时为单词提供同义词建议。
2. word2vec 的实现:基于跳过 - 词模型和负采样
word2vec 算法有两种实现方式:从上下文预测单词,或者从单词预测上下文。我们采用后者,即带有负采样的跳过 - 词(skipgram)版本。
2.1 上下文预测与负采样
我们的目标是预测给定单词周围某个上下文的有效性。为了实现这一点,我们需要创建上下文的正例和反例,即有效上下文和无效上下文。由于考虑所有可能的负例是不切实际的,因此引入了负采样。负采样意味着我们不仅收集有效上下文的正例,还随机收集无效上下文的负例。
具体步骤如下:
1. 创建字典