使用scikit-learn进行文本和多类分类
在机器学习的分类任务中,scikit-learn提供了多种强大的工具和算法。本文将详细介绍如何使用scikit-learn进行文本和多类分类,包括线性判别分析(LDA)、二次判别分析(QDA)、随机梯度下降(SGD)、朴素贝叶斯分类以及半监督学习中的标签传播等方法。
1. 使用LDA进行分类
线性判别分析(LDA)试图拟合特征的线性组合来预测结果变量,常作为预处理步骤。以下是使用LDA进行分类的具体步骤:
1. 准备工作
- 安装支持最新股票读取器的pandas版本,在Anaconda命令行中输入:
conda install -c anaconda pandas-datareader
- 打开笔记本并检查`pandas-datareader`是否正确导入:
from pandas-datareader import data
- 操作步骤
- 导入必要的库并存储要使用的股票代码、数据的起始日期和结束日期:
%matplotlib inline
from pandas_datareader import data