18、使用scikit-learn进行文本和多类分类

使用scikit-learn进行文本和多类分类

在机器学习的分类任务中,scikit-learn提供了多种强大的工具和算法。本文将详细介绍如何使用scikit-learn进行文本和多类分类,包括线性判别分析(LDA)、二次判别分析(QDA)、随机梯度下降(SGD)、朴素贝叶斯分类以及半监督学习中的标签传播等方法。

1. 使用LDA进行分类

线性判别分析(LDA)试图拟合特征的线性组合来预测结果变量,常作为预处理步骤。以下是使用LDA进行分类的具体步骤:
1. 准备工作
- 安装支持最新股票读取器的pandas版本,在Anaconda命令行中输入:

conda install -c anaconda pandas-datareader
- 打开笔记本并检查`pandas-datareader`是否正确导入:
from pandas-datareader import data
  1. 操作步骤
    • 导入必要的库并存储要使用的股票代码、数据的起始日期和结束日期:
%matplotlib inline
from pandas_datareader import data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值