lambda
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
36、基于BERT的假新闻分类:从训练到评估的全流程解析
本文详细介绍了基于BERT模型进行假新闻分类的全流程,包括模型加载、优化设置、训练、评估以及相关技术拓展。通过实验展示了BERT模型在假新闻分类任务中的卓越性能,准确率高达99%。同时,探讨了数据预处理优化、模型可解释性、部署应用及未来发展趋势,为构建高效、可靠的假新闻检测系统提供了全面指导。原创 2025-08-26 10:02:40 · 26 阅读 · 0 评论 -
35、自然语言模型:检测假新闻文章
本博客探讨了使用自然语言处理技术进行假新闻分类的方法。首先介绍了传统的机器学习方法,如使用随机森林分类器结合TF-IDF特征,取得了约93%的准确率。随后,介绍了基于深度学习的解决方案,利用预训练的BERT模型来提升分类性能。此外,还讨论了如何使用Google Cloud Vertex AI进行大规模模型训练。通过对比两种方法的优缺点和性能,为不同场景下的假新闻检测提供了技术参考。原创 2025-08-25 15:04:45 · 18 阅读 · 0 评论 -
34、基于视觉和自然语言处理的模型构建与应用
本博客详细介绍了基于视觉和自然语言处理的模型构建与应用,包括视觉缺陷检测系统和假新闻检测系统。视觉部分涵盖了模型上传、端点创建、模型部署及在线预测获取;自然语言部分使用随机森林算法对假新闻进行分类,并进行了数据清洗与预处理。博客还分析了两个系统的性能优化方向及应用场景拓展,帮助读者掌握解决实际问题的方法和技术。原创 2025-08-24 15:37:41 · 22 阅读 · 0 评论 -
33、基于视觉的缺陷检测:从数据处理到模型部署
本文介绍了基于视觉的缺陷检测任务的完整流程,从数据处理、模型构建与训练,到模型部署与优化。使用TensorFlow构建卷积神经网络(CNN)对手镯图像进行分类,区分为‘好的’、‘有缺陷的’和‘破碎的’三类。通过数据预处理、训练集与测试集划分、模型训练及性能评估,最终将模型部署到Google Cloud Vertex AI端点,实现预测服务。文章还讨论了模型优化策略,包括数据增强、架构调整和超参数优化,以提升模型性能。原创 2025-08-23 12:39:35 · 15 阅读 · 0 评论 -
32、利用TensorFlow构建自定义图像上色深度学习模型
本文介绍了如何使用TensorFlow构建一个自定义的深度学习模型,实现将黑白图像转换为彩色图像的任务。内容涵盖数据准备、模型构建、训练与评估、预测与可视化,详细展示了从数据预处理到模型优化的完整流程。通过编码器-解码器结构的卷积神经网络,模型能够学习图像的色彩分布规律并实现自动上色。文章最后还对模型的改进方向进行了展望。原创 2025-08-22 12:46:57 · 23 阅读 · 0 评论 -
31、机器学习模型评估、推理与自定义模型训练全解析
本文详细解析了机器学习模型的评估与推理方法,重点介绍了使用BQML和Vertex AI进行模型开发的流程。内容涵盖BQML模型评估指标、ML.PREDICT函数的使用,以及在Vertex AI上训练完全自定义深度学习模型的具体步骤,包括模型打包、提交训练作业、监控训练进度和模型评估方法。此外,还展望了未来在大规模机器学习模型开发中的发展趋势和潜在应用。原创 2025-08-21 13:49:52 · 22 阅读 · 0 评论 -
30、低代码构建机器学习模型:BQML 全解析
本文全面解析了如何使用 BQML 通过低代码方式构建、调优和评估机器学习模型。内容涵盖了构建模型的参数选项、导入外部模型的方法、创建 k-means 模型的参数配置、超参数调优的策略以及模型评估的步骤与方法。通过这些技术,可以高效地提升模型的性能和准确性,适用于各种机器学习应用场景。原创 2025-08-20 10:46:27 · 24 阅读 · 0 评论 -
29、低代码构建机器学习模型的选项
本文介绍了通过低代码方式构建机器学习模型的各种选项和参数设置,重点涵盖DNN模型、提升树和随机森林模型的创建流程及关键参数配置。同时对比分析了不同模型的选项差异,并讨论了数据拆分、正则化、学习率等通用选项的重要性。旨在帮助开发者高效创建和优化适合自身业务需求的机器学习模型。原创 2025-08-19 11:03:46 · 18 阅读 · 0 评论 -
28、自然语言模型:检测虚假新闻文章
本文介绍了如何利用自然语言处理技术和深度学习模型(特别是BERT)来检测虚假新闻文章。对比了经典随机森林分类器和基于BERT的模型的性能,结果显示BERT模型在相同数据集上的准确率显著提高,达到约99%。文章还探讨了其他深度学习模型(如RoBERTa)、多模态信息融合的应用以及模型部署到生产环境的步骤。此外,还总结了使用深度学习模型时需要注意的问题,并展望了未来虚假新闻检测的发展方向。原创 2025-08-18 16:54:44 · 20 阅读 · 0 评论 -
27、自然语言模型:检测虚假新闻文章
本文探讨了利用自然语言处理(NLP)和机器学习技术来自动检测虚假新闻的方法。首先使用随机森林分类器对经过清洗和预处理的新闻数据进行训练和测试,通过TF-IDF将文本转化为数值特征,并取得了约93%的分类准确率。随后介绍了如何在Google Cloud的Vertex AI平台上进行模型训练和实验管理。此外,还实现了基于BERT的深度学习模型,利用其强大的上下文理解能力进行虚假新闻分类,并与随机森林模型进行了性能对比。最后总结了两种方法的优劣及未来的研究方向,如多模态融合、对抗攻击防御和实时监测系统的开发。原创 2025-08-17 10:52:17 · 20 阅读 · 0 评论 -
26、基于视觉的缺陷检测系统:机器也能“看”啦!
本文介绍了一个端到端的基于视觉的缺陷检测系统,利用深度学习技术训练模型识别产品缺陷,并将模型部署到 Google Vertex AI 端点以实现在线预测。内容涵盖模型训练、评估、部署及预测请求的完整流程。原创 2025-08-16 14:12:22 · 22 阅读 · 0 评论 -
25、推荐系统与视觉缺陷检测系统技术详解
本文详细介绍了推荐系统和基于计算机视觉的缺陷检测系统的实现过程。推荐系统部分通过用户评分数据预测电影喜好,视觉缺陷检测部分使用 TensorFlow 构建卷积神经网络模型,对玻璃手镯图像进行缺陷分类。内容涵盖数据准备、模型构建、训练、评估、部署到 Vertex AI 以及在线预测的完整流程,适用于制造业中的自动化质量检测场景。原创 2025-08-15 13:31:34 · 24 阅读 · 0 评论 -
24、电影推荐系统:类型、评估与部署
本文探讨了电影推荐系统的常见类型,如人口统计过滤,并介绍了现实世界中推荐系统的评估方法,包括点击率、转化率等关键绩效指标。同时,文章详细讲解了如何基于 MovieLens 数据集,在 Google Cloud 的 Vertex AI 平台上构建、训练、测试并部署一个协同过滤推荐系统,以实现个性化电影推荐。最后还展望了推荐系统的发展趋势和优化方向。原创 2025-08-14 09:41:05 · 18 阅读 · 0 评论 -
23、谷歌云机器学习API:视觉、自然语言处理与语音的强大应用
本文介绍了谷歌云提供的多种机器学习API解决方案,涵盖视觉、自然语言处理、语音识别和推荐系统等领域。通过这些技术,组织可以高效分析非结构化数据,从中提取有价值的见解,提升业务效率和用户体验。文章还详细解析了Translation Hub、自然语言AI、语音AI以及推荐系统的功能和应用场景,展示了谷歌云在机器学习领域的强大能力。原创 2025-08-13 14:37:53 · 24 阅读 · 0 评论 -
22、Google Cloud上的AI处理方案:文档、视觉、翻译与视频分析
本文介绍了Google Cloud上的多种AI处理方案,包括文档处理的端到端解决方案Document AI、计算机视觉相关的Vision AI和Video AI、多语言翻译的Translation AI,以及自然语言处理和语音识别的Natural Language AI与Speech AI。通过预训练API、AutoML和自定义模型,这些服务帮助企业从非结构化数据中提取价值,实现智能化和全球化业务目标。文章还提供了代码示例、使用流程以及选择合适AI服务的建议,为开发者和企业提供了实用参考。原创 2025-08-12 15:11:12 · 19 阅读 · 0 评论 -
21、谷歌 Vertex AI 与 Document AI:生成式 AI 与文档处理的强大工具
本文详细介绍了谷歌 Vertex AI GenAI 和 Document AI 的强大功能及其在生成式 AI 和文档处理领域的应用。Vertex AI GenAI 提供了多种大语言模型调优方法,如提示工程、微调和 PEFT,同时结合安全过滤机制,确保生成内容的质量和合规性。Document AI 则是一个端到端的文档处理平台,支持从多种类型文档中提取结构化数据,适用于金融、医疗、物流等多个行业。文章还分析了它们的技术架构、应用场景以及未来发展趋势与挑战。原创 2025-08-11 16:30:31 · 29 阅读 · 0 评论 -
20、使用 Vertex AI 进行生成式人工智能开发
本文详细介绍了如何使用谷歌云的 Vertex AI 进行生成式人工智能(GenAI)开发,涵盖了提示设计的基础知识、GenAI Studio 的使用案例,以及如何构建和部署 GenAI 应用程序。内容包括提示的组成、响应参数调整、文本生成、图像生成、代码生成,以及基于 RAG 的问答解决方案等实际应用场景。同时探讨了开发过程中可能遇到的挑战及解决方案,并展望了 GenAI 在未来的发展与应用前景。原创 2025-08-10 16:45:33 · 36 阅读 · 0 评论 -
19、Unleashing the Power of MLOps Governance and GenAI with Vertex AI
本文探讨了MLOps治理和生成式人工智能(GenAI)在Vertex AI平台上的强大功能。文章涵盖了MLOps治理的核心组成部分,如数据治理和模型治理,并介绍了Vertex AI提供的相关工具,如模型注册表、元数据存储和模型监控。此外,文章详细介绍了GenAI的基础知识,包括大型语言模型(LLMs)及其挑战,如偏见和生成虚假内容。还讨论了如何利用Vertex AI的工具,如Vertex AI Model Garden和GenAI Studio,来开发和部署GenAI模型。文章通过实际用例展示了GenAI在原创 2025-08-09 09:16:22 · 22 阅读 · 0 评论 -
18、利用 Vertex AI 工具实现 MLOps 治理
本文详细介绍了如何利用 Google Cloud 的 Vertex AI 工具实现 MLOps 治理,涵盖元数据存储、特征存储、管道、模型监控和计费监控等关键工具。通过这些工具,组织可以更好地管理机器学习工作流,确保模型质量、可靠性与合规性。文章还提供了最佳实践、实际应用案例和操作步骤,并展望了 Vertex AI 在未来的发展方向。原创 2025-08-08 16:30:55 · 14 阅读 · 0 评论 -
17、Vertex AI 在机器学习部署、预测与治理中的应用
本文探讨了 Vertex AI 在机器学习模型部署、预测与治理中的应用,涵盖了计算资源的选择与扩展策略、MLOps 治理的核心概念与重要性、实际应用场景以及 Vertex AI 提供的关键工具(如模型注册表和元数据存储)。同时,还分析了不同行业对 MLOps 治理的需求差异,并展望了未来 MLOps 的发展趋势,帮助组织更好地实现高效、可靠、合规的机器学习操作体系。原创 2025-08-07 14:39:35 · 35 阅读 · 0 评论 -
16、Google Cloud上的ML工作流编排与预测:Vertex AI和Cloud Composer的应用
本文介绍了在Google Cloud平台上使用Vertex AI和Cloud Composer进行机器学习工作流编排及预测的方法。详细说明了Cloud Composer的环境创建与测试,Vertex AI Pipelines与Cloud Composer的比较,以及如何在Vertex AI上进行在线预测和批量预测。文章还探讨了不同场景下的工具选择建议及实际应用案例,帮助用户更高效地开发和管理机器学习项目。原创 2025-08-06 09:23:39 · 19 阅读 · 0 评论 -
15、模型优化与Vertex AI管道部署:NAS与Kubeflow实践
本文介绍了两种重要的模型优化技术——神经架构搜索(NAS)和超参数调优(HPT),并探讨了如何利用Vertex AI Pipelines编排机器学习工作流。通过实际案例展示了在Vertex AI上使用Kubeflow管道实现数据加载、模型训练、评估和部署的完整流程。文章还分析了NAS与HPT的区别、各自的核心组件与最佳实践,并提供了管道组件的详细解析及实际应用中的注意事项,为构建高效、可重复的机器学习解决方案提供了指导。原创 2025-08-05 10:42:01 · 22 阅读 · 0 评论 -
14、模型优化:超参数调优与神经架构搜索
本文详细介绍了机器学习中的两种重要模型优化技术:超参数调优(HPT)和神经架构搜索(NAS)。重点讲解了HPT的基本概念、常用搜索算法以及如何在Google Vertex AI上配置和运行HPT作业,并简要介绍了NAS的原理及其与HPT的区别。文章还提供了结合HPT和NAS的优化流程建议,帮助开发者提升模型性能并高效进行模型优化。原创 2025-08-04 14:49:40 · 30 阅读 · 0 评论 -
13、谷歌云Vertex AI的机器学习模型可解释性指南
本博客深入探讨了谷歌云Vertex AI平台提供的可解释AI(XAI)功能,涵盖基于特征和基于示例的两种主要解释方法。通过实际案例,展示了如何使用SHAP和集成梯度技术解释表格和图像分类模型,并详细说明了基于示例解释的原理与实现步骤。旨在帮助数据科学家和AI从业者更好地理解和优化机器学习模型,推动透明、可信和负责任的AI应用发展。原创 2025-08-03 16:05:45 · 29 阅读 · 0 评论 -
12、利用Vertex AI进行机器学习模型训练与可解释性分析
本文介绍了如何使用Vertex AI进行自定义机器学习模型的训练与评估,并探讨了模型的可解释性(XAI)在机器学习中的重要性。通过详细说明图像、表格和文本数据的不同XAI技术,文章展示了如何提升模型的透明度和可信度。最后,文章总结了从模型训练到应用可解释性技术的完整流程,为MLOps从业者提供了实用的指导方案。原创 2025-08-02 11:29:51 · 28 阅读 · 0 评论 -
11、将模型打包为 Vertex AI 训练任务
本文详细介绍了如何将机器学习模型打包为 Vertex AI 训练任务,并通过 Google Cloud 进行大规模实验和模型训练。内容涵盖数据准备、容器镜像配置、训练脚本编写以及使用 Vertex AI TensorBoard 实时监控训练进度。通过本文,读者可以掌握在 Vertex AI 上高效运行和管理训练作业的方法。原创 2025-08-01 15:27:16 · 11 阅读 · 0 评论 -
10、使用低代码和自定义方法构建机器学习模型
本文介绍了使用低代码工具 BQML 和自定义深度学习模型构建机器学习模型的方法。BQML 提供了通过 SQL 快速训练、调优、评估和推理的解决方案,适合处理结构化数据和常见 ML 问题;而自定义模型(如使用 TensorFlow 构建的模型)则提供了更高的灵活性和性能,适合处理复杂的非结构化数据任务,如图像分类和颜色还原。文章还对比了两种方法的优劣,并通过实际案例展示了它们的应用场景。原创 2025-07-31 10:51:27 · 37 阅读 · 0 评论 -
9、使用BQML进行特征转换与模型构建
本文介绍了如何使用BigQuery ML(BQML)进行特征转换和模型构建。详细讲解了BQML提供的多种手动预处理功能及其使用方法,并展示了不同类型的模型(如线性回归、深度神经网络、提升树、k-均值聚类等)的创建流程和参数设置。此外,还涵盖了模型导入和远程模型的使用方式,帮助用户更高效地进行机器学习模型的开发与应用。原创 2025-07-30 09:22:00 · 12 阅读 · 0 评论 -
8、无代码与低代码搭建机器学习模型全攻略
本文详细介绍了使用无代码和低代码工具搭建机器学习模型的方法,重点涵盖Google Cloud的Vertex AI和BigQuery ML(BQML)平台。内容包括模型部署、预测生成、以编程方式调用API、特征转换实践、模型训练与评估等。同时对比了无代码与低代码方案的优缺点,帮助用户根据自身需求选择合适的机器学习开发路径。无论您是数据分析师还是非专业人员,都能通过本文快速入门机器学习实践。原创 2025-07-29 09:38:23 · 14 阅读 · 0 评论 -
7、谷歌云Vertex AI:AI/ML开发的一站式解决方案
本文介绍了谷歌云Vertex AI提供的AI/ML开发一站式解决方案,涵盖Vertex AI Workbench的自定义容器配置与笔记本调度功能,以及Vertex AI AutoML的自动化机器学习能力。通过详细的步骤说明和最佳实践建议,帮助开发者高效完成从数据导入、模型训练、评估到部署预测的全流程,适用于不同专业背景的用户进行AI/ML项目开发。原创 2025-07-28 12:18:53 · 20 阅读 · 0 评论 -
6、机器学习数据处理与Vertex AI Workbench全解析
本文详细解析了机器学习中的数据处理技术以及如何利用Google Cloud的Vertex AI Workbench进行高效的开发与部署。内容涵盖数据转换方法如密集嵌入、Google Cloud上的可扩展数据工具如Cloud Data Fusion和Dataflow,以及Jupyter Notebook和Vertex AI Workbench的使用方法,包括托管与用户管理笔记本的区别、自定义容器的创建和调度笔记本任务的实现。旨在帮助机器学习从业者提升开发效率和项目质量。原创 2025-07-27 09:12:32 · 25 阅读 · 0 评论 -
5、谷歌云机器学习数据处理全攻略
本文详细介绍了在谷歌云平台(GCP)上进行机器学习项目时的数据处理全流程,涵盖数据迁移、存储和转换三大核心环节。针对数据迁移,介绍了适用于不同场景的四种工具:谷歌云存储迁移工具、BigQuery 数据传输服务、存储传输服务和传输设备;在数据存储方面,对比分析了GCS和BigQuery的适用场景及优劣势;在数据转换部分,探讨了三种常见方法,包括Jupyter Notebook临时转换、云数据融合和数据流管道(Dataflow)。同时,文章通过流程图和场景化建议帮助读者更好地理解并选择合适的数据处理策略,确保机原创 2025-07-26 11:00:39 · 23 阅读 · 0 评论 -
4、MLOps成熟度级别与Vertex AI助力机器学习全生命周期管理
本文详细介绍了MLOps的成熟度级别,从级别0到级别2,逐步探讨了机器学习操作流程的演进,并重点分析了Google Cloud Vertex AI如何助力实现MLOps的全生命周期管理。通过Vertex AI提供的多种工具,如Vertex AI Workbench、Vertex AI Feature Store、Vertex AI Pipelines等,组织可以高效地实现数据管理、模型开发、工作流编排、模型部署与监控。文章还提供了不同成熟度级别下Vertex AI的应用示例,以及MLOps与Vertex A原创 2025-07-25 16:27:05 · 22 阅读 · 0 评论 -
3、机器学习项目挑战、局限与 MLOps 重要性
本文探讨了现实世界中开发机器学习解决方案所面临的挑战,如数据质量不佳、欠拟合与过拟合问题、基础设施需求等,并分析了机器学习的技术和业务局限性,包括数据问题、可解释性缺乏、成本限制和伦理问题。文章还介绍了MLOps的重要性,强调其在标准化工作流程、模型监控、安全合规等方面的作用,并通过谷歌Vertex AI展示了MLOps的实施方法和成熟度级别,帮助企业更好地应对机器学习项目中的复杂性与风险。原创 2025-07-24 14:27:49 · 17 阅读 · 0 评论 -
2、机器学习项目生命周期、挑战与应对策略
本文深入探讨了机器学习项目的完整生命周期,从定义用例、数据探索、模型选择与训练,到模型部署与监控等关键步骤。同时,文章分析了现实世界中ML项目开发常见的挑战,包括数据收集与安全、非代表性训练数据、数据质量差、过拟合与欠拟合以及基础设施要求等问题,并提供了具体的应对策略。通过遵循标准化的项目流程和采取有效的优化措施,可以显著提升ML项目的成功率和模型性能,为企业创造更大的价值。原创 2025-07-23 10:25:38 · 18 阅读 · 0 评论 -
1、谷歌Vertex AI助力机器学习开发全解析
本文深入解析了如何利用谷歌Vertex AI平台进行机器学习开发,全面覆盖了机器学习项目的生命周期、MLOps实践、数据存储与转换、模型构建与优化、模型部署与监控等关键环节。同时,还介绍了无代码、低代码以及完全自定义模型的开发方法,并探讨了生成式AI、文档处理、视觉识别、自然语言处理等多个应用场景。无论您是初学者还是资深开发者,都能从本文中获得有价值的参考信息,助力高效、安全、合规地构建AI解决方案。原创 2025-07-22 12:13:55 · 31 阅读 · 0 评论