
机器学习
lcwzzz
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
特征处理
1. 特征缩放公式:Xi=Xi−XminXmax−XminX_i = \frac{X_i - X_{min}}{X_{max} - X_{min}}Xi=Xmax−XminXi−Xminimport numpy as npfrom sklearn.preprocessing import MinMaxScalerdata = np.array([[115.], [140.]...原创 2019-11-25 15:40:40 · 257 阅读 · 0 评论 -
聚类
1. K-Means(K均值)聚类算法步骤:(1) 首先我们选择一些类/组,并随机初始化它们各自的中心点。中心点是与每个数据点向量长度相同的位置。这需要我们提前预知类的数量(即中心点的数量)。(2) 计算每个数据点到中心点的距离,数据点距离哪个中心点最近就划分到哪一类中。(3) 计算每一类中中心点作为新的中心点。(4) 重复以上步骤,直到每一类中心在每次迭代后变化不大为止。也可以多次随...转载 2019-11-24 18:56:00 · 681 阅读 · 0 评论 -
集成学习方法
1. 什么是集成学习方法集成学习方法是指组合多个模型,以获得更好的效果,使集成的模型具有更强的泛化能力。集成学习主要有两种方法:Bagging和Boosting。...原创 2019-11-23 11:21:31 · 1526 阅读 · 0 评论 -
感知机算法
什么是感知机「Perceptron」PLA全称是Perceptron Linear Algorithm,即线性感知机算法,属于一种最简单的感知机(Perceptron)模型。感知机模型是机器学习二分类问题中的一个非常简单的模型。它的基本结构如下图所示:其中,xi是输入,wi表示权重系数,b表示偏移常数。感知机的线性输出为:为了简化计算,通常我们将b作为权重系数的一个维度,即w0。同时,...转载 2019-11-16 12:18:01 · 347 阅读 · 0 评论 -
决策树
1. 决策树的构造决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类的过程。这一过程对应着对特征空间的划分,也对应着决策树的构建。开始:构建根节点,将所有训练数据都放在根节点,选择一个最优特征,按着这一特征将训练数据集分割成子集,使得各个子集有一个在当前条件下最好的分类。如果这些子集已经能够被基本正确分类,那么构建叶节点,并...转载 2019-11-16 20:33:15 · 243 阅读 · 0 评论 -
朴素贝叶斯
1. 贝叶斯公式问题描述:已知A事件发生的概率P(A),B事件发生的概率P(B),以及在A事件发生的前提下B事件发生的概率P(B|A)那么在B事件发生的前提下A事件发生的概率P(A|B):P(A∣B)=P(A)P(B∣A)P(B)P(A|B) = \frac{ P(A)P(B|A) } { P(B) }P(A∣B)=P(B)P(A)P(B∣A)举例:今天出去游玩,但是出门发现早上天气...原创 2019-11-17 16:58:48 · 297 阅读 · 0 评论 -
支持向量机(SVM)
1. 什么是支持向量机通俗来讲,SVM是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。如:SVM要做的就是找出划分蓝点和红点的一条线,且使这条线尽可能远离这些点(即就是让两条虚线之间的距离Margin最大)。中间那条关键的线我们叫它“超平面”。我们现在处理的是二维平面数据,此时超平面为一条直...原创 2019-11-20 14:44:25 · 432 阅读 · 0 评论 -
scikit learn的常用函数
scikit learn的一些函数读取数据import pandasimport numpy# Read the datadata = pandas.read_csv('data.csv')# Split the data into X and yX = numpy.array(data[['x1', 'x2']])y = numpy.array(data['y'])使用不...原创 2019-11-16 20:26:36 · 479 阅读 · 1 评论 -
模型评估指标
1. 混淆矩阵(Confusion Matrix)适用于二分类问题用Y表示标签,y表示模型预测值Y \ yTrueFalseTrue真阳性假阴性False假阳性真阴性注:真假表示预测值与标签值是否相同,相同为真,不同为假。阴阳表示预测值的真假,真即为阳,假即为阴。...转载 2019-11-14 10:03:22 · 1248 阅读 · 0 评论