多元正态分布

本文详细介绍了多元分布的概念,包括随机向量、分布函数和密度函数,强调了独立性和不相关性的区别。此外,还探讨了随机向量的数字特征,如标准差、方差和协方差,并解释了为何在计算样本标准差时要除以n-1。最后,讨论了两种距离度量:欧式距离和马氏距离。这些概念在统计学和数据分析中至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多元分布的基本概念

  • 一元我们称为变量, 多元我们称为向量
随机向量

假定所讨论的是多个变量的总体, 所研究的数据是同时观测 p p p个指标 (即变量), 又进行了 n n n次观测得到的, 把这 p p p个指标表示为 X 1 , X 2 , X 3 , , , , , X p X_1, X_2, X_3, ,,,, X_p X1,X2,X3,,,,,Xp, 然后可以用向量
X = ( X 1 , X 2 , X 3 , , , , , X p ) T X=(X_1, X_2, X_3, ,,,, X_p)^T X=(X1,X2,X3,,,,,Xp)T表示对同一个个体观测的 p p p个变量. 若观测了n个个体, 则和得到如下图的数据, 称每个个体的 p p p个变量为一个样品**, 而全体 n n n个样品形成一个样本

在这里插入图片描述

横看这个表, 记 X ( a ) = ( X a 1 , X a 2 , X a 3 , , , , , X a p ) T X_{(a)} = (X_{a1}, X_{a2}, X_{a3}, ,,,, X_{ap})^T X(a)=(Xa1,Xa2,Xa3,,,,,Xap)T, a=1, 2, 3, , , n
它表示第a个样品的观测值.
竖着看表, 第 j j j列的元素 X j = ( X 1 j , X 2 j , X 3 j , , , , , X p j ) T X_j = (X_{1j}, X_{2j}, X_{3j}, ,,,, X_{pj})^T Xj=(X1j,X2j,X3j,,,,,Xpj)T, j=1, 2, 3, , , p
它表示对第 j j j个变量的 n n n次观测数值

样本资料可以用矩阵语言表示:

在这里插入图片描述

定义:
X 1 , X 2 , X 3 , , , , , X p X_1, X_2, X_3, ,,,, X_p X1,X2,X3,,,,,Xp p p p个随机变量, 由它们组成的向量 X = ( X 1 , X 2 , X 3 , , , , , X p ) T X=(X_1, X_2, X_3, ,,,, X_p)^T X=(X1,X2,X3,,,,,Xp)T称为随机变量

分布函数和密度函数

定义:
X = ( X 1 , X 2 , X 3 , , , , , X p ) T X=(X_1, X_2, X_3, ,,,, X_p)^T X=(X1,X2,X3,,,,,Xp)T是一随机向量, 它的多元分布函数是:

F ( X ) = F ( x 1 , x 2 , x 3 , , , x p ) = P ( X 1 < = x 1 , , , X p < = x p ) F(X) = F(x_1, x_2, x_3, , , x_p) = P(X_1<=x_1, , , X_p<=x_p) F(X)=F(x1,x2,x3,,,xp)=P(X1<=x1,,,Xp<=xp)
式中, X = ( x 1 , x 2 , x 3 , , , x p ) ∈ R p , X=(x_1, x_2, x_3, , , x_p)∈R^p, X=(x1,x2,x3,,,xp)Rp, 并记作X~F

定义:
设X~F(X) = F ( x 1 , x 2 , x 3 , , , x p ) F(x_1, x_2, x_3, , , x_p) F(x1,x2,x3,,,xp), 若存在一个非负的函数f(), 使得

F ( x ) = ∫ − ∞ x 1 ⋅ ⋅ ⋅ ∫ − ∞ x p f ( t 1 , ⋅ ⋅ ⋅ t p ) d t 1 ⋅ ⋅ ⋅ ⋅ d t p F(x) = ∫_{-∞}^{x_1} ··· ∫_{-∞}^{x_p} f(t_1, ···t_p)dt_1····dt_p F(x)=x1xpf(t1,tp)dt1dtp, 对一切x∈R^p
成立, 则称X或F(X)有分布密度f() 并称X为连续型随机变量
一个 p p p维变量的函数 **f()**能作为 R p R^p Rp中的某个随机变量的分布密度,当且仅当:

在这里插入图片描述

多元变量的独立性

定义:
P ( X < = x , Y < = y ) = P ( X < = x , Y < = y ) P(X<=x, Y<=y) = P(X<=x, Y<=y) P(X<=x,Y<=y)=P(X<=x,Y<=y)对一切 ( X , Y ) 成 立 , 则 称 (X, Y)成立, 则称 (X,Y),两个随机向量X和Y是相互独立的
P也可以为分布函数F, 或者概率密度函数f

  • 独立肯定不相关, 也就是协方差为0, 但是反过来不一定成立
随机向量的数字特征
标准差

在这里插入图片描述

方差

在这里插入图片描述

  • 之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方
协方差

可以仿照标准差给出协方差

在这里插入图片描述

X = ( X ( 1 ) , X ( 2 ) , X ( 3 ) , , , , , X ( n ) ) T X=(X_{(1)}, X_{(2)}, X_{(3)}, ,,,, X_{(n)})^T X=(X(1),X(2),X(3),,,,,X(n))T有p个分量, 也就是 X ( 1 ) X_{(1)} X(1)是一个 p ∗ 1 p*1 p1的列向量

  • 对自己的协方差就是X减去均值然后求均值,再转置相乘
    在这里插入图片描述
    最后得到的矩阵是 p ∗ p p*p pp维的
    注意矩阵中X是变量, 没有下标的是向量, 这其实是个正定阵, 关于对角线对称

从协方差的定义上我们也可以看出一些显而易见的性质,如

在这里插入图片描述
在这里插入图片描述

两个距离

欧式距离

求直线距离

马氏距离

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

live_for_myself

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值