多元分布的基本概念
- 一元我们称为变量, 多元我们称为向量
随机向量
假定所讨论的是多个变量的总体, 所研究的数据是同时观测
p
p
p个指标 (即变量), 又进行了
n
n
n次观测得到的, 把这
p
p
p个指标表示为
X
1
,
X
2
,
X
3
,
,
,
,
,
X
p
X_1, X_2, X_3, ,,,, X_p
X1,X2,X3,,,,,Xp, 然后可以用向量
X
=
(
X
1
,
X
2
,
X
3
,
,
,
,
,
X
p
)
T
X=(X_1, X_2, X_3, ,,,, X_p)^T
X=(X1,X2,X3,,,,,Xp)T表示对同一个个体观测的
p
p
p个变量. 若观测了n个个体, 则和得到如下图的数据, 称每个个体的
p
p
p个变量为一个样品**, 而全体
n
n
n个样品形成一个样本
横看这个表, 记
X
(
a
)
=
(
X
a
1
,
X
a
2
,
X
a
3
,
,
,
,
,
X
a
p
)
T
X_{(a)} = (X_{a1}, X_{a2}, X_{a3}, ,,,, X_{ap})^T
X(a)=(Xa1,Xa2,Xa3,,,,,Xap)T, a=1, 2, 3, , , n
它表示第a个样品的观测值.
竖着看表, 第
j
j
j列的元素
X
j
=
(
X
1
j
,
X
2
j
,
X
3
j
,
,
,
,
,
X
p
j
)
T
X_j = (X_{1j}, X_{2j}, X_{3j}, ,,,, X_{pj})^T
Xj=(X1j,X2j,X3j,,,,,Xpj)T, j=1, 2, 3, , , p
它表示对第
j
j
j个变量的
n
n
n次观测数值
样本资料可以用矩阵语言表示:
定义:
设
X
1
,
X
2
,
X
3
,
,
,
,
,
X
p
X_1, X_2, X_3, ,,,, X_p
X1,X2,X3,,,,,Xp为
p
p
p个随机变量, 由它们组成的向量
X
=
(
X
1
,
X
2
,
X
3
,
,
,
,
,
X
p
)
T
X=(X_1, X_2, X_3, ,,,, X_p)^T
X=(X1,X2,X3,,,,,Xp)T称为随机变量
分布函数和密度函数
定义:
设
X
=
(
X
1
,
X
2
,
X
3
,
,
,
,
,
X
p
)
T
X=(X_1, X_2, X_3, ,,,, X_p)^T
X=(X1,X2,X3,,,,,Xp)T是一随机向量, 它的多元分布函数是:
F
(
X
)
=
F
(
x
1
,
x
2
,
x
3
,
,
,
x
p
)
=
P
(
X
1
<
=
x
1
,
,
,
X
p
<
=
x
p
)
F(X) = F(x_1, x_2, x_3, , , x_p) = P(X_1<=x_1, , , X_p<=x_p)
F(X)=F(x1,x2,x3,,,xp)=P(X1<=x1,,,Xp<=xp)
式中,
X
=
(
x
1
,
x
2
,
x
3
,
,
,
x
p
)
∈
R
p
,
X=(x_1, x_2, x_3, , , x_p)∈R^p,
X=(x1,x2,x3,,,xp)∈Rp, 并记作X~F
定义:
设X~F(X) =
F
(
x
1
,
x
2
,
x
3
,
,
,
x
p
)
F(x_1, x_2, x_3, , , x_p)
F(x1,x2,x3,,,xp), 若存在一个非负的函数f(), 使得
F
(
x
)
=
∫
−
∞
x
1
⋅
⋅
⋅
∫
−
∞
x
p
f
(
t
1
,
⋅
⋅
⋅
t
p
)
d
t
1
⋅
⋅
⋅
⋅
d
t
p
F(x) = ∫_{-∞}^{x_1} ··· ∫_{-∞}^{x_p} f(t_1, ···t_p)dt_1····dt_p
F(x)=∫−∞x1⋅⋅⋅∫−∞xpf(t1,⋅⋅⋅tp)dt1⋅⋅⋅⋅dtp, 对一切x∈R^p
成立, 则称X或F(X)有分布密度f() 并称X为连续型随机变量
一个
p
p
p维变量的函数 **f()**能作为
R
p
R^p
Rp中的某个随机变量的分布密度,当且仅当:
多元变量的独立性
定义:
若
P
(
X
<
=
x
,
Y
<
=
y
)
=
P
(
X
<
=
x
,
Y
<
=
y
)
P(X<=x, Y<=y) = P(X<=x, Y<=y)
P(X<=x,Y<=y)=P(X<=x,Y<=y)对一切
(
X
,
Y
)
成
立
,
则
称
(X, Y)成立, 则称
(X,Y)成立,则称两个随机向量X和Y是相互独立的
P也可以为分布函数F, 或者概率密度函数f
- 独立肯定不相关, 也就是协方差为0, 但是反过来不一定成立
随机向量的数字特征
标准差
方差
- 之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方
协方差
可以仿照标准差给出协方差
设 X = ( X ( 1 ) , X ( 2 ) , X ( 3 ) , , , , , X ( n ) ) T X=(X_{(1)}, X_{(2)}, X_{(3)}, ,,,, X_{(n)})^T X=(X(1),X(2),X(3),,,,,X(n))T有p个分量, 也就是 X ( 1 ) X_{(1)} X(1)是一个 p ∗ 1 p*1 p∗1的列向量
- 对自己的协方差就是X减去均值然后求均值,再转置相乘
最后得到的矩阵是 p ∗ p p*p p∗p维的
注意矩阵中X是变量, 没有下标的是向量, 这其实是个正定阵, 关于对角线对称
从协方差的定义上我们也可以看出一些显而易见的性质,如
两个距离
欧式距离
求直线距离