无题

今天上来看了一下,博客的总阅读量超过20万了

有点惊喜,觉得应该写点啥,纪念一下。

决定开始写博客,是第一次准备换工作的时候。

我不知道我是不是个典型的案例。

文章写的比较多的时候都是自己感觉不太好的时候。

就是每当自己不满于现状,想改变,但是又不知道具体该干什么的时候,我就想,那我就学习点啥吧。

于是就有了星星点点的博文。

一转头发现,我也坚持到了现在,有点意外。

写博客这件事,我是从中受益了的。因为我发现,第一,写博客的过程其实是重新梳理思路的过程。可能在写的过程中有了新的理解。第二,博客其实是个移动的电子笔记本。如果一些中间过程忘记了,在一个有网的地方就可以查看。第三,这是个分享的过程,虽然影响力有限,但是哪怕我的分享对别人有一点点的帮助,我会觉得貌似我的存在感也增加了一丢丢。因为我的学习资料大部分也来自网络,算是回馈。

上次写了篇文章说要看看知识付费的东西,我买了得到的《产品思维30讲》

对现在的我思维冲击很大,感觉打开了新世界的大门。

开始呢,我大概是每天早上上班的时候在车上听一讲,时间刚好。

30讲听完以后,感觉还是意犹未尽。

然后在某个周末,我整体又听了一遍。

非常受震撼,她的观点,她的表达方式,她举得例子都是我喜欢的方式。

然后我像个小粉丝一样,翻了她的公众号,博客,微博,查她的个人经历,查了相关联的观点,看了几本她提到的书。

思想很受益。让我本来摇摆,怀疑的一些东西,又变的坚定了。

虽然现在我还不知道怎么做,但是我相信,一定会有适合我的那条路。

加油吧~

感谢我自己有个读书的习惯,所以不管怎么迷茫,怎么低迷,怎么丧,我都可以藏在书本里,找到那一点点的愉悦~








OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、计算机视觉和模式识别等领域。物体识别是OpenCV的一个重要应用场景,以下是一些常见的物体识别方法和技术: 1. **特征提取与匹配**: - **SIFT(尺度不变特征变换)**和**SURF(加速稳健特征)**:这些算法用于检测和描述局部特征,能够在图像中识别出相同的物体,即使它们的大小、旋转或光照条件发生变化。 - **ORB(定向快速旋转BRIEF)**:一种快速的特征检测和描述算法,适用于实时应用。 2. **模板匹配**: - 通过在图像中滑动一个模板(已知物体的图像),并计算模板与图像区域的相似度,来找到物体的位置。 3. **机器学习与深度学习**: - **支持向量机(SVM)**:用于分类和回归分析,可以用于物体识别任务。 - **卷积神经网络(CNN)**:深度学习模型,特别适合处理图像数据,能够自动学习图像的特征并进行分类。 4. **目标检测算法**: - **Haar级联分类器**:基于积分图和AdaBoost算法,用于实时人脸检测。 - **YOLO(You Only Look Once)**和**SSD(Single Shot MultiBox Detector)**:实时目标检测算法,能够在单次前向传播中同时进行目标定位和分类。 5. **实例分割**: - **Mask R-CNN**:在目标检测的基础上,进一步分割出目标的精确轮廓。 OpenCV提供了丰富的API和工具,可以方便地实现上述方法。以下是一个简单的示例代码,展示如何使用OpenCV进行模板匹配: ```python import cv2 import numpy as np # 读取原始图像和模板图像 original_image = cv2.imread('original_image.jpg') template = cv2.imread('template.jpg') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) w, h = template_gray.shape[::-1] # 转换为灰度图 gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # 模板匹配 result = cv2.matchTemplate(gray_original, template_gray, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(result >= threshold) # 绘制矩形框 for pt in zip(*loc[::-1]): cv2.rectangle(original_image, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) # 显示结果 cv2.imshow('Detected', original_image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值