mmtracking单目标跟踪数据集说明以及自定义数据集

官方数据集说明文档可参考:数据集准备 — MMTracking 0.14.0 文档

我对其单目标跟踪的数据集格式简单说明一下。

单目标跟踪用到的数据集包括:LaSOT、UAV123、TrackingNet、OTB100、GOT10k、VOT2018。单目标跟踪任务的训练和测试配置文件中,用到了 MSCOCO, ILSVRC, LaSOT, UAV123, TrackingNet, OTB100 和 GOT10k 数据集。

官方虽然提供了OTB100、VOT2018的数据集下载脚本,但下载速度非常慢,有的则官网都没了,所以想要下载OTB100、VOT2018、UAV123,最快的办法就是使用openxlab

以OTB100为例,查看网址数据集-OpenDataLab

下载方法:

pip install openxlab #安装

pip install -U openxlab #版本升级

openxlab login #进行登录,输入对应的AK/SK

openxlab dataset info --dataset-repo OpenDataLab/OTB100 #数据集信息及文件列表查看

openxlab dataset get --dataset-repo OpenDataLab/OTB100 #数据集下载

openxlab dataset download --dataset-repo OpenDataLab/OTB100 --source-path /raw --target-path data/ #数据集文件下载

数据集的结构,要按照官方文档1.5 数据集文件夹结构的说明放好,然后根据文档2. 转换标注格式 执行相应的脚本,生成统一的CocoVID格式,实际上就是在每个数据集下生成了一个annotations文件夹,里面放着一个txt,打开文档看一下:

格式为:图片序列路径、图片序列标注文件路径、开始帧、结束帧,开始帧默认就是1,结束帧可以理解为最后一张图片的序列,或者文件夹下图片的总数。

以data_seq/UAV123/bike1,anno/UAV123/bike1.txt,1,3085为例,data_seq/UAV123/bike1目录下放的是一个视频的图片序列

anno/UAV123/bike1.txt存放的是每张图片,同一个物体的矩形标注框位置703和361是矩形框左上角点的坐标,57是矩形宽度,114是矩形长度。

1为起始ID

3085为data_seq/UAV123/bike1下图片总数量。

了解了CocoVID的格式,那么自定义数据集就不是问题了。思路如下:

1、视频抽帧

视频文件抽帧,图片文件名从000001.jpg开始。

2、标注图片

建议一个视频只跟着一个运动的物体标注,如果数据集实在匮乏,也可以一个视频的图片序列标注多个运动物体,但只要每个运动的物体都生成独立的标注文件就可以了。

3、生成annotations

以“data_seq/UAV123/bike1,anno/UAV123/bike1.txt,1,3085”为例,一行一条数据生成annotations.txt即可。

### 使用自制数据集进行目标追踪的方法和教程 使用自制数据集进行目标跟踪任务,通常需要完成以下内容的准备与实现:数据集格式化、模型配置调整、训练过程设置以及测试验证。以下是详细的说明: #### 1. 数据集格式化 自定义数据集需要符合目标跟踪任务的标准格式。参考常见的目标跟踪数据集(如LaSOT、UAV123等),可以将数据集组织为以下结构[^1]: ``` custom_dataset/ ├── sequences/ │ ├── seq1/ │ │ ├── img001.jpg │ │ ├── img002.jpg │ │ └── ... │ ├── seq2/ │ │ ├── img001.jpg │ │ ├── img002.jpg │ │ └── ... │ └── ... └── annotations/ ├── seq1.txt ├── seq2.txt └── ... ``` - **sequences/**:存放视频序列的图像帧。 - **annotations/**:每个序列对应一个标注文件,包含每帧的目标边界框信息(通常是`x, y, w, h`格式)。 #### 2. 模型配置调整 在目标跟踪任务中,常用的框架包括MMTracking等。以MMTracking为例,可以通过修改配置文件来支持自定义数据集[^1]。主要步骤如下: - 修改`data_root`路径以指向自定义数据集的根目录。 - 调整数据增强策略(如裁剪、缩放等)以适应自定义数据集的特点。 - 确保模型输入尺寸与数据集图像尺寸一致。 示例配置文件片段: ```python data_root = 'path/to/custom_dataset/' data = dict( train=dict( type='TrackingDataset', ann_file=data_root + 'annotations/train.txt', img_prefix=data_root + 'sequences/', pipeline=train_pipeline), val=dict( type='TrackingDataset', ann_file=data_root + 'annotations/val.txt', img_prefix=data_root + 'sequences/', pipeline=test_pipeline)) ``` #### 3. 训练过程设置 训练过程需要确保数据加载器能够正确读取自定义数据集,并且模型能够在训练过程中不断优化。参考YOLOv8目标检测中的训练流程[^2],可以采用类似的方式进行目标跟踪模型的训练: - 准备训练脚本,指定配置文件路径。 - 设置训练参数(如学习率、批次大小等)。 - 启动训练并监控损失曲线。 示例训练命令: ```bash python tools/train.py configs/single_object_tracking/sot_model.py --work-dir work_dirs/sot_custom ``` #### 4. 测试与验证 完成训练后,需要对模型进行测试以评估其性能。测试过程包括: - 加载预训练权重。 - 在测试集上运行推理。 - 使用指标(如成功率、精度等)评估模型表现。 示例测试命令: ```bash python tools/test.py configs/single_object_tracking/sot_model.py work_dirs/sot_custom/latest.pth --eval success precision ``` --- ### 示例代码 以下是一个简的Python脚本,用于检查自定义数据集是否符合预期格式: ```python import os def check_dataset_structure(dataset_path): sequences_dir = os.path.join(dataset_path, "sequences") annotations_dir = os.path.join(dataset_path, "annotations") if not os.path.exists(sequences_dir) or not os.path.exists(annotations_dir): print("Error: Dataset structure is incorrect.") return False for seq_dir in os.listdir(sequences_dir): seq_path = os.path.join(sequences_dir, seq_dir) if not os.path.isdir(seq_path): continue annotation_file = os.path.join(annotations_dir, f"{seq_dir}.txt") if not os.path.exists(annotation_file): print(f"Error: Missing annotation file for sequence {seq_dir}.") return False print("Dataset structure is valid.") return True # Example usage dataset_path = "path/to/custom_dataset" check_dataset_structure(dataset_path) ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值