exgcd求逆元

逆元;
ab=1(mod mo)
在mo的模域下ab互为倒数;
这样你除a和乘b就是一样的;
本来关于exgcd求逆元的东西我要在后面写;
但是有一道题目,要一边除一遍取模,然后我的同学全用分解质因数,没有人用逆元,就问他们可不可以用逆元

题解就是分解质因数啊,逆元也可以把

麻木潦倒;
为什么他们考试都比我好呢?
一定是我太傻了;
我们根据ab=1(mod mo)
是不是可以变成
ab-y*mo=1(mod ∞)
那么我们知道a,知道mo,而且gcd(a,mo)=1
我们是不是可以用exgcd求b了?
ac+y*mo=1;
原来exgcd也是有条件的,所以逆元应用并不是怎么广泛啊
https://www.luogu.org/problem/show?pid=1082
裸题

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值