TLDR: 本研究系统评估了EEG功能连接检测流程,发现LCMV波束形成结合MIM或TRGC可提供最稳健的分析方案,并开发了EEGLAB插件ROIconnect以助力研究者标准化EEG功能连接分析。
Pellegrini, F., Delorme, A., Nikulin, V., & Haufe, S. (2023). Identifying good practices for detecting inter-regional linear functional connectivity from EEG. NeuroImage, 277, 120218.
https://doi.org/10.1016/j.neuroimage.2023.120218
一、研究背景
近年来,功能神经影像学领域正从单纯的脑区活动定位向脑区间交互模式分析转变。功能连接FC反映的是不同脑区间的统计依赖性,与结构连接不同,它不依赖于解剖路径,而是通过时间序列的共变关系推测脑区间的信息交流模式。已有研究表明,FC不仅与认知功能密切相关,还在帕金森病、阿尔茨海默病、癫痫等神经疾病中表现出异常变化。然而,如何从EEG数据中准确提取功能连接仍然存在诸多技术挑战。
EEG因其高时间分辨率成为功能连接分析的重要工具,但其信号源定位、区域内时间序列聚合策略及连接度量选择都会显著影响最终结果。本文基于仿真数据,对多种EEG功能连接分析流程进行系统评估,优化EEG功能连接检测的策略,并提供了一款开源EEGLAB插件——ROIconnect,以便于研究人员在实际数据中应用优化流程。
二、研究方法
本研究采用了EEG仿真数据,模拟真实脑网络中的相互作用,并评估不同处理流程的性能。核心分析流程如下:
1.EEG信号生成(Signal Generation)
采用白噪声滤波生成Alpha波段(8-12 Hz)的相互作用信号,并加入1/f尺度的粉红噪声模拟背景脑活动。
设定不同信噪比(SNR),控制信号与噪声的混合比例。
采用头模型投射源信号到传感器层,生成EEG数据。
2. 源投射(Source Projection)
EEG信号并非直接记录于脑源,而是投影到头皮传感器上,因此需要源重建(inverse solution)以恢复脑区级信号。
采用四种逆解方法(Source Reconstruction Methods):
eLORETA(低分辨率电流密度成像)
LCMV(线性约束最小方差波束形成)
DICS(动态成像相干源)
Champagne(贝叶斯稀疏先验)
这些方法用于从传感器层重建大脑源活动信号,并将信号分配到预定义的脑区。
3. 降维(Dimensionality Reduction)
每个脑区包含多个体素(voxels)或源点,需要通过降维方法减少数据维度,以便进行功能连接计算。研究对比了六种降维方法:
FIXPC:固定主成分数(固定PCA)
VARPC:可变主成分数(变PCA)
MEANFC:区域内信号取均值
CENTRAL:选择区域中心体素
FCMEAN:先计算区域内所有体素对的功能连接后取均值
TRUEVOX:不进行降维,直接使用所有体素
4. 功能连接估计(Functional Connectivity Estimation)
采用不同的功能连接计算方法,以测量脑区间的时序相关性:
Coherence / iCOH(相干性/虚部相干性):衡量不同脑区的相干性,但容易受到体积传导影响。
MIM / MIC(多变量交互度量/最大化虚部相干性):稳健方法,更能抑制体积传导伪连接。
GC / TRGC(Granger因果 / 时间反转Granger因果):评估方向性连接,并排除非因果性相互作用。
5. 评估(Evaluation)
采用基于排名的性能评估指标(Percentile Rank, PR),评估不同方法的功能连接检测能力。
实验重复100次(100×),确保结果的统计稳定性,并计算不同方法的平均性能表现。
什么是基于排名的性能评估指标(Percentile Rank, PR)?
基于排名的性能评估指标 Percentile Rank(PR) 是一种用于衡量功能连接检测能力的统计方法。它衡量某种方法在多个实验重复中相对于所有方法的性能排名,可以理解为某方法在所有实验中的相对表现。PR值的计算基于如下公式:
其中:
- R是某方法在所有方法中的排名(从最优到最差排序)。
- N是所有方法的总数。
PR 值范围:0-100,数值越高表示方法的表现越好。
PR 计算后,一般取多个实验的平均 PR 值,作为该方法的最终性能指标。
注意:研究中的PR 计算方式不同于传统的百分位数排名,而是基于排名分布和归一化的指标,过于复杂就不展开了。
PR 值越高,说明该方法在真实功能连接检测中效果更佳。
三、研究结果
1. 逆解方法影响功能连接检测
- LCMV:波束形成方法在识别功能连接方面表现最佳,其次是 Champagne而 eLORETA的表现较差。
- DICS:虽能较好检测无方向性的FC,但在方向性检测(TRGC)上表现不佳,推测可能由于DICS在不同频率独立重建源信号,影响了跨频信息聚合。
2. 选择稳健的功能连接度量至关重要
- MIM、MIC、TRGC:明显优于传统相干性和Granger因果分析,表现出较高的功能连接检测能力。
- Coherence和GC: 易受体积传导影响,导致伪连接检测,适用于脑电的功能连接分析。(GC方差较大不是很稳定)
3. 区域内信号聚合方法影响结果
采用固定数量的PCA主成分(3-4个) 进行区域内信号降维,可提高功能连接检测的准确性,避免信号维度对FC指标的影响。
- 采用可变PC数(VARPC90, VARPC99)会导致较大偏差
,可能因不同区域信号维数不均衡导致FC过估计。
4. 低信噪比和多重交互降低功能连接检测能力
- 信噪比(SNR)越高,功能连接识别能力越强,高SNR(19.1 dB)时PR值接近1,而低SNR(-7.4 dB)时PR大幅下降。
- 多重真实交互(>2)会导致性能下降,增加交互数量会增加源泄漏效应,使真实连接更难识别。
5. 交互时间延迟对方向性检测至关重要
- 功能连接的方向性检测需要较长的时间延迟(≥10 ms),短时延(2-4 ms)时,TRGC的方向性检测性能显著下降。
四、讨论与结论
本研究通过系统仿真分析优化了EEG功能连接检测流程,发现:
- LCMV逆解方案在功能连接分析中表现最佳。
- MIM、TRGC等稳健度量明显优于传统度量。
- 固定数量的PCA降维可有效抑制体积传导导致的误差。
- 信噪比、交互数量和时间延迟显著影响FC检测能力。
基于以上结果,研究团队开发了EEGLAB插件ROIconnect,集成了最佳功能连接分析方法,为EEG研究者提供标准化的分析工具。
五、ROIconnect
ROIconnect 是一个 EEGLAB 的 开源插件,专门用于 EEG 源级别的区域功率(Power)计算 和 脑区间功能连接(Functional Connectivity, FC)分析。它不仅支持 EEGLAB GUI 操作,还可以通过命令行直接调用。ROIconnect 依赖 EEGLAB 进行 EEG 数据预处理、Leadfield 计算和源建模。因此,在使用 ROIconnect 之前,用户需要先使用 EEGLAB 预处理 EEG 数据。
地址: https://github.com/sccn/roiconnect
ROIconnect 的核心功能包括:
1. pop_roi_activity:计算源级别的脑区功率和区域信号降维。
读取 EEG 传感器数据,并投影到 源空间(Source Space)。
计算 源级功率(Power),采用 Welch 方法 计算不同频率的功率谱。
采用 PCA 降维,提取每个脑区的 主要成分(PCs)。
2. pop_roi_connect:计算
脑区之间的功能连接(FC)。
计算 脑区间的功能连接(FC)。
- 支持多种功能连接度量,如 Coherence、Granger 因果、MIM/MIC 等。
- 支持频率分辨计算,即输出每个频率上的 FC 值。
3. pop_roi_connectplot:
可视化功率和功能连接结果。支持以下几种可视化方式:
- 脑区功率(Power)
- 柱状图(Bar plot)
- 皮层表面拓扑图(Cortical surface topography)
- 功能连接(Functional Connectivity, FC)
- 功能连接矩阵(Region-by-region matrix)
- 全脑功能连接(Net FC)
- 种子点功能连接(Seed FC)
🔥点赞=解锁秘籍!🔥
你的一键三连(👍❤️⭐)就是打开 ROIconnect 终极教程的通关密码!