
脑机接口
文章平均质量分 73
普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
滤波器组典型相关分析(Filter Bank Canonical Correlation Analysis,FBCCA)是一种用于增强SSVEP信号频率识别准确率的算法
滤波器组典型相关分析(Filter Bank Canonical Correlation Analysis,FBCCA)是一种用于增强SSVEP信号频率识别准确率的算法.原创 2025-04-19 23:56:47 · 381 阅读 · 0 评论 -
使用清华公开数据集验证过,算法效果确实很好,但自己设计范式采集下来的数据却始终效果很差,可能的原因需要在以下几方面进行分析排查
TDCA(Task-Discriminant Component Analysis)算法是一种用于 SSVEP(Steady-State Visual Evoked Potential,稳态视觉诱发电位)分类识别的先进算法,主要应用于脑机接口(BCI)领域。也许你可能遇到过这种情况:使用清华公开数据集验证过,算法效果确实很好,但自己设计范式采集下来的数据却始终效果很差,可能的原因需要在以下几方面进行分析排查。原创 2025-04-17 23:37:43 · 279 阅读 · 0 评论 -
TDCA算法在自采数据中表现不佳的可能原因及改进建议
清华数据集采用30-39Hz高频刺激(120Hz刷新率),其SSVEP谐波分布在60-78Hz等频段。若自采范式使用不同刷新率(如60Hz)或非整数倍频率设计,会导致谐波成分偏离预期。:检查触发信号与EEG记录的时间对齐精度(误差应<5ms),必要时进行离线时间校正(参考网页4的TDC校正流程):增加带阻滤波(消除工频干扰)和ICA去眼电预处理,验证原始信号频谱是否存在异常峰(网页1推荐方法):如肌电噪声(50-100Hz)或显示器刷新残留噪声,会破坏SSVEP信号的谐波结构。原创 2025-04-17 23:30:35 · 607 阅读 · 0 评论 -
Ensemble-DNN模型的工作原理
Ensemble-DNN模型的工作原理原创 2025-04-08 23:10:23 · 455 阅读 · 0 评论 -
基于LSTM的脑机接口运动意图解码Python实现,结合LSTM特征提取技术和脑电信号处理规范
以下是一个基于LSTM的脑机接口运动意图解码Python实现,结合LSTM特征提取技术和脑电信号处理规范。代码包含模拟数据生成、特征提取、模型训练和可视化全流程,可直接运行。原创 2025-04-08 10:04:20 · 503 阅读 · 0 评论 -
脑机接口(BCI)的技术原理与应用领域
脑机接口(BCI)的技术原理与应用领域可结合多学科前沿进展和实际案例解析如下原创 2025-04-08 09:26:29 · 581 阅读 · 0 评论