情感分析论文阅读之《Aspect Level Sentiment Classification with Deep Memory Network》

   本文利用了加入了attention机制的QA系统中的深度记忆网络,本文将aspect word的上下文信息作为memory m中存储的内容。实现了一个针对aspect-level的情感分类模型。本文在attention机制中,增加了location特征,将aspect的位置也作为记忆网络中memory的一部分。最终在laptop数据集和restaurant数据集中进行了测试,并与feature-based SVM模型,LSTM模型和attention-LSTM模型进行了对比。

Task Definition

   给定一个由nnn个单词组成的句子s={ w1,w2...,wi...wn}s=\{w_1,w_2...,w_i...w_n\}s={ w1,w2...,wi...wn},其中wiw_iwi为aspect word,确定句子sss对词wiw_iwi的情感倾向。例如句子"great food but the service was dreadful""great \ food\ but\ the\ service\ was\ dreadful""great food but the service was dreadful"中,对于aspect word“food”“food”food的情感是积极的,而对于“service”“service”service的情感是消极的。本文中所有单词向量叠加在一个单词嵌入矩阵L∈Rd∗∣V∣L\in R^{d*|V|}LRdV中,其中ddd为单词向量的维数,∣V∣|V|V为单词大小。wiw_iwi的嵌入一词记作ei∈Rd∗1e_i\in R^{d*1}eiRd1,它是嵌入矩阵LLL中的一列。

An Overview of the Approach

   给定一个由nnn个单词组成的句子s={ w1,w2...,wi...wn}s=\{w_1,w_2...,w_i...w_n\}s={ w1,w2...,wi...wn},其中wiw_i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值