本文利用了加入了attention机制的QA系统中的深度记忆网络,本文将aspect word的上下文信息作为memory m中存储的内容。实现了一个针对aspect-level的情感分类模型。本文在attention机制中,增加了location特征,将aspect的位置也作为记忆网络中memory的一部分。最终在laptop数据集和restaurant数据集中进行了测试,并与feature-based SVM模型,LSTM模型和attention-LSTM模型进行了对比。
Task Definition
给定一个由nnn个单词组成的句子s={ w1,w2...,wi...wn}s=\{w_1,w_2...,w_i...w_n\}s={ w1,w2...,wi...wn},其中wiw_iwi为aspect word,确定句子sss对词wiw_iwi的情感倾向。例如句子"great food but the service was dreadful""great \ food\ but\ the\ service\ was\ dreadful""great food but the service was dreadful"中,对于aspect word“food”“food”“food”的情感是积极的,而对于“service”“service”“service”的情感是消极的。本文中所有单词向量叠加在一个单词嵌入矩阵L∈Rd∗∣V∣L\in R^{d*|V|}L∈Rd∗∣V∣中,其中ddd为单词向量的维数,∣V∣|V|∣V∣为单词大小。wiw_iwi的嵌入一词记作ei∈Rd∗1e_i\in R^{d*1}ei∈Rd∗1,它是嵌入矩阵LLL中的一列。
An Overview of the Approach
给定一个由nnn个单词组成的句子s={ w1,w2...,wi...wn}s=\{w_1,w_2...,w_i...w_n\}s={ w1,w2...,wi...wn},其中wiw_i