杭电ACM-LCY算法进阶培训班-专题训练10

一系列ACM算法题目解析,包括两只兔子的相遇概率计算,狼追羊问题的最短路径,字符串画家的最少操作次数,以及数组中元素两两配对的总和。涉及动态规划、最短路径算法和字符串处理等技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

杭电ACM-LCY算法进阶培训班-专题训练10

1015 Two Rabbits

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#define inf 0x7fffffff
#define ll long long
//#define int long long
//#define double long double
//#define double long long
#define re register int
//#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define mk make_pair
#define P pair < int , int > 
using namespace std;
const int mod=1e9+7;
const int M=1e8;
const int N=4e3+5;//??????.???? 4e8
int n;
int f[N][N],a[N]; 
void solve()
{
    while(cin>>n&&n)
    {
        int ans=0;
        for(re i=1;i<=n;i++)  scanf("%d",&a[i]),a[n+i]=a[i];
        for(re i=0;i<N;i++)  for(re j=0;j<N;j++)  f[i][j]=0;
        for(re i=1;i<=n*2;i++)  f[i][i]=1;
        for(re len=2;len<=2*n;len++)  for(re l=1;l<=2*n;l++)
        {
            int r=len+l-1;
            if(r>2*n)  break;
            if(a[l]==a[r])  f[l][r]=f[l+1][r-1]+2;
            f[l][r]=max(f[l][r],max(f[l][r-1],f[l+1][r]));
        }
        for(re i=1;i<=2*n;i++)  ans=max(ans,max(f[i][i+n-1],f[i][i+n]-1));
        printf("%d\n",ans);
    }
}
signed main()
{
    int T=1;
//    cin>>T;
    for(int index=1;index<=T;index++)
    {
        solve();
//        puts("");
    }
    return 0;
}
/*

abcRefRc



*/

1016 Dire Wolf

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#define inf 0x7fffffff
#define ll long long
//#define int long long
//#define double long double
//#define double long long
#define re register int
//#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define mk make_pair
#define P pair < int , int > 
using namespace std;
const int mod=1e9+7;
const int M=1e8;
const int N=4e3+5;//??????.???? 4e8
int n;
int f[N][N],a[N],b[N]; 
void solve()
{
    cin>>n;
    int ans=0;
    for(re i=1;i<=n;i++)  scanf("%d",&a[i]);
    for(re i=1;i<=n;i++)  scanf("%d",&b[i]);
    b[n+1]=0;
    for(re i=0;i<N;i++)  for(re j=0;j<N;j++)  f[i][j]=0;
    for(re i=1;i<=n;i++)  for(re j=i;j<=n;j++)  f[i][j]=1e9;
    for(re len=1;len<=n;len++)  for(re l=1;l<=n;l++)
    {
        int r=l+len-1;
        if(r>n)  break;
        for(re k=l;k<=r;k++)  f[l][r]=min(f[l][r],f[l][k-1]+a[k]+f[k+1][r]+b[l-1]+b[r+1]);
    }
    cout<<f[1][n]<<endl;
}
signed main()
{
    int T=1;
    cin>>T;
    for(int index=1;index<=T;index++)
    {
        printf("Case #%d: ",index);
        solve();
//        puts("");
    }
    return 0;
}
/*

abcRefRc



*/

1017 String painter

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#define inf 0x7fffffff
#define ll long long
//#define int long long
//#define double long double
//#define double long long
#define re register int
//#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define mk make_pair
#define P pair < int , int > 
using namespace std;
const int mod=1e9+7;
const int M=1e8;
const int N=4e2+5;//??????.???? 4e8
char a[N],b[N];
int f[N][N],dp[N];
void solve()
{
    while(scanf("%s%s",a+1,b+1)!=EOF)
    {
        memset(f,0x3f,sizeof(f));
//        memset(dp,0,sizeof(dp));
        int n=strlen(a+1);
        for(int i=0;i<=n;i++)  f[i][i]=1;
        for(int len=2;len<=n;len++)
            for(int i=1;i<=n;i++)
            {
                int j=i+len-1;
                if(j>n)  break;
                if(b[i]==b[j])  f[i][j]=min(f[i][j],f[i][j-1]);
                else  for(int k=i;k<j;k++)  f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
            }
        for(int i=1;i<=n;i++)  dp[i]=f[1][i];
        if(a[1]!=b[1])  dp[1]=1;
        else dp[1]=0;
        for(int i=2;i<=n;i++)if(b[i]==a[i])  dp[i]=dp[i-1];
        else  for(int j=1;j<i;j++)  dp[i]=min(dp[i],dp[j]+f[j+1][i]);
        printf("%d\n",dp[n]);
    }
}
signed main()
{
    int T=1;
//    cin>>T;
    for(int index=1;index<=T;index++)
    {
        solve();
//        puts("");
    }
    return 0;
}
/*

abcRefRc



*/

1018 You Are the One

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#define inf 0x7fffffff
#define ll long long
//#define int long long
//#define double long double
//#define double long long
#define re register int
//#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define mk make_pair
#define P pair < int , int > 
using namespace std;
const int mod=1e9+7;
const int M=1e8;
const int N=4e2+5;//??????.???? 4e8
int a[N],sum[N],f[N][N];
int n;
void solve()
{
    cin>>n;
    for(re i=1;i<=n;i++)  scanf("%d",&a[i]);
    for(re i=1;i<=n;i++)  sum[i]=sum[i-1]+a[i];
    for(re i=0;i<N;i++)  for(re j=0;j<N;j++)  f[i][j]=0;
    for(re i=1;i<=n;i++)  for(re j=i+1;j<=n;j++)  f[i][j]=1e9;
    for(re l=n-1;l>=1;l--)  for(re r=l+1;r<=n;r++)  for(re k=l;k<=r;k++)  f[l][r]=min(f[l][r],f[l+1][k]+f[k+1][r]+(k-l+1)*(sum[r]-sum[k])+a[l]*(k-l));
    cout<<f[1][n]<<endl;
}
signed main()
{
    int T=1;
    cin>>T;
    for(int index=1;index<=T;index++)
    {
        printf("Case #%d: ",index);
        solve();
//        puts("");
    }
    return 0;
}
/*

abcRefRc



*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值