杭电ACM-LCY算法进阶培训班-专题训练15

本篇博客介绍杭电ACM-LCY算法进阶培训班的四个专题训练题目,包括最短路径算法、六度分离问题求解、选择最佳路线问题及套利机会检测。通过实际案例展示了Dijkstra算法及其变种的应用,并使用SPFA算法解决负权边问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

杭电ACM-LCY算法进阶培训班-专题训练(03-07-11-15)

1012 最短路

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#define inf 0x7fffffff
//#define ll long long
#define int long long
//#define double long double
#define re register int
#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define P pair < int , int >
#define mk make_pair
using namespace std;
const int mod=1e9+7;
const int M=1e8+5;
const int N=2e6+5;//?????????? 4e8
struct node{int ver,edge,next;}e[N];
int n,m,tot,head[N],d[N],v[N];
void add(int x,int y,int z){e[++tot].ver=y;e[tot].edge=z;e[tot].next=head[x];head[x]=tot;}
void addedge(int x,int y,int z){add(x,y,z);add(y,x,z);}
void init()
{
    tot=1;
    for(re i=0;i<=n+1;i++)  head[i]=v[i]=0,d[i]=1e18;
    d[1]=0;
}
void dijkstra()
{
    priority_queue < pair < int , int > > q;
    q.push(mk(0,1));
    while(q.size())
    {
        int x=q.top().second;q.pop();
        if(v[x])  continue;v[x]=1;
        for(re i=head[x];i;i=e[i].next)
        {
            int y=e[i].ver;
            int z=e[i].edge;
            if(d[y]>d[x]+z)  d[y]=d[x]+z,q.push(mk(-d[y],y));
        }
    }
} 
void solve()
{
    while(cin>>n>>m&&(n+m))
    {
        init();
        for(re i=1;i<=m;i++)
        {
            int x,y,z;
            scanf("%lld%lld%lld",&x,&y,&z);
            addedge(x,y,z);
         }
         dijkstra();
         cout<<d[n]<<endl;
    }
}
signed main()
{
    int T=1;
//    cin>>T;
    for(int index=1;index<=T;index++)
    {
//        printf("Case #%d: ",index);
        solve();
//        puts("");
    }
    return 0;
}
/*
4
1 2 3 4

*/

1013 六度分离

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#define inf 0x7fffffff
//#define ll long long
#define int long long
//#define double long double
#define re register int
#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define P pair < int , int >
#define mk make_pair
using namespace std;
const int mod=1e9+7;
const int M=1e8+5;
const int N=2e6+5;//?????????? 4e8
int d[1005][1005],n,m;
void solve()
{
    while(cin>>n>>m)
    {
        int op=0;
        for(re i=1;i<=n;i++)  for(re j=1;j<=n;j++)  d[i][j]=1e18;
        for(re i=1;i<=n;i++)  d[i][i]=0;
        for(re i=1;i<=m;i++)
        {
            int x,y;
            scanf("%lld%lld",&x,&y);
            x++,y++;
            d[x][y]=d[y][x]=1;
        }
        for(re k=1;k<=n;k++)  for(re i=1;i<=n;i++)  for(re j=1;j<=n;j++)  d[i][j]=d[j][i]=min(d[i][j],d[i][k]+d[k][j]);
        for(re i=1;i<=n;i++)  for(re j=1;j<=n;j++)  if(d[i][j]>7)  op=1;
        if(op)  puts("No");
        else  puts("Yes");
    }
}
signed main()
{
    int T=1;
//    cin>>T;
    for(int index=1;index<=T;index++)
    {
//        printf("Case #%d: ",index);
        solve();
//        puts("");
    }
    return 0;
}
/*
4
1 2 3 4

*/


1014 Choose the best route

#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
#define inf 0x7fffffff
//#define ll long long
#define int long long
//#define double long double
#define re register int
#define void inline void
#define eps 1e-8
//#define mod 1e9+7
#define ls(p) p<<1
#define rs(p) p<<1|1
#define pi acos(-1.0)
#define pb push_back
#define P pair < int , int >
#define mk make_pair
using namespace std;
const int mod=1e9+7;
const int M=1e8+5;
const int N=2e6+5;//?????????? 4e8
int n,m,d[N],tot,head[N],v[N];
struct ndoe{int ver,edge,next;}e[N];
void add(int x,int y,int z){e[++tot].ver=y;e[tot].edge=z;e[tot].next=head[x];head[x]=tot;}
void addedge(int x,int y,int z){add(x,y,z);add(y,x,z);}
void dijkstra(int s)
{
	d[s]=0;
	priority_queue < pair < int , int > > q;
	q.push(mk(0,s));
	while(q.size())
	{
		int x=q.top().second;q.pop();
		if(v[x])  continue;  v[x]=1;
		for(re i=head[x];i;i=e[i].next)
		{
			int y=e[i].ver;
			int z=e[i].edge;
			if(d[y]>d[x]+z)  d[y]=d[x]+z,q.push(mk(-d[y],y));
		}
	}
}
void init()
{
	for(re i=0;i<=n+1;i++)  head[i]=v[i]=0,d[i]=1e18;
	tot=1;
}
void solve()
{
	int t;
	while(cin>>n>>m>>t)
	{
		init();
		for(re i=1;i<=m;i++)
		{
			int x,y,z;
			scanf("%lld%lld%lld",&x,&y,&z);
			add(x,y,z);
		}
		cin>>m;
		for(re i=1;i<=m;i++)
		{
			int x;
			scanf("%lld",&x);
			add(n+1,x,0);
		}
		dijkstra(n+1);
		if(d[t]==1e18)  puts("-1");
		else  printf("%lld\n",d[t]);
	}
}
signed main()
{
    int T=1;
//    cin>>T;
    for(int index=1;index<=T;index++)
    {
//    	printf("Case #%d: ",index);
        solve();
//        puts("");
    }
    return 0;
}
/*
4
1 2 3 4

*/



1015 Arbitrage

#include <bits/stdc++.h>
#define inf 0x7fffffff
#define ll long long
//#define int long long
//#define double long double
#define eps 1e-5
//#define mod 1e9+7
using namespace std;
const int mod=1e4+7;
const int N=1e4+5;//空间最大限制 19260817
struct node
{
    int ver,next;
    double edge;
}e[N];
int tot,head[N];
void add(int x,int y,double z)
{
    e[++tot].ver=y;
    e[tot].next=head[x];
    e[tot].edge=z;
    head[x]=tot;
}
int n,m;
map < string , int > mp;
map < int , string > p;
int v[N],cnt[N];
double d[N];
void init()
{
    memset(e,0,sizeof(e));
    tot=0;
    memset(head,0,sizeof(head));
    mp.clear();
}
bool spfa(int s)
{
    memset(v,0,sizeof(v));
    memset(cnt,0,sizeof(cnt));
    for(int i=1;i<=n;i++)  d[i]=0;
    queue < int > q;
    q.push(s);
    v[s]=1;
    d[s]=1.0;
//    cnt[s]=1;
    while(q.size())
    {
        int x=q.front();
        q.pop();
        v[x]=0;
        for(int i=head[x];i;i=e[i].next)
        {
            int y=e[i].ver;
            double z=e[i].edge;
            if(d[y]<z*d[x])
            {
                d[y]=z*d[x];
                cnt[y]=cnt[x]+1;
                if(cnt[y]>n)  return true;
                if(!v[y])
                {
                    
                    v[y]=1;
                    q.push(y);
                }
            }
        }
    }
    return false;
}
signed main()
{
//    ios::sync_with_stdio(false);
    int flag=0;
    while(scanf("%d",&n)&&n)
    {
        init();
        flag++;
        int fla=0;
//        p.clear();
        for(int i=1;i<=n;i++)
        {
            string s;
            cin>>s;
            mp[s]=i;
        }
        scanf("%d",&m);
        for(int i=1;i<=m;i++)
        {
            string s1,s2;
            double z;
            cin>>s1>>z;
            cin>>s2;
            add(mp[s1],mp[s2],z);
//            add(mp[s2],mp[s1],z);
        }
        for(int i=1;i<=n;i++)
            if(spfa(i))
            {
                printf("Case %d: Yes\n",flag);
                fla=1;
                break;
            }
        if(!fla)  printf("Case %d: No\n",flag);
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值