
计算机视觉
文章平均质量分 50
ldda123
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像处理100问
问题1 通道交换 读取图像,然后将RGB\text{RGB}RGB通道替换成BGR\text{BGR}BGR通道。 下面的代码用于提取图像的红色通道。 注意,cv2.imread() 的系数是按BGR\text{BGR}BGR顺序排列的! 其中的变量red表示的是仅有原图像红通道的imori.jpg。 import cv2 def BGR2RGB(img): #获取图像bgr各个通道的色彩 b=img[:,:,0].copy() g=img[:,:,1].copy() r=i原创 2021-09-16 20:33:47 · 852 阅读 · 0 评论 -
卷积神经网络的工作原理
简介 卷积神经网络可以用于图像,音频、视频。 举个例子,输入图片为X,经过卷积神经网络处理,计算机最后识别出图像内的字母是X。 哪怕图像经过平移、旋转、加厚,依然能够识别出图像为X。 虽然图像经过了旋转,但是他依然保留了原图的某些特征。 上图的三个九宫格分别代表三个卷积核,也叫特征提取器,它用来提取原图的三种特征。 如上图所示。 什么是卷积运算 卷积运算代表卷积核在原图上进行运动扫描,卷积核与扫描部分的对应位置数字相乘然后再求和得出新的值。 上图绿框部分经过卷积核扫描求平均值为1,表示绿框中原创 2021-09-13 11:00:00 · 1007 阅读 · 0 评论 -
分水岭算法实现图像分割
源码 import numpy as np import cv2 from matplotlib import pyplot as plt %matplotlib auto #加载图像 src = cv2.imread('test2.png') img = src.copy() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #阈值分割,将图像分为黑白两部分 ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRES原创 2021-08-19 00:38:11 · 558 阅读 · 0 评论 -
卷积神经网络中的感受域
在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野.通常来说,大感受野的效果要比小感受野的效果更好.由公式可见,stride(卷积步长)越大,感受野越大.但是过大的stride会使得feature map保留的信息变少.因此,在减小stride的情况下,如何增大感受野或使其保持不变,成为了分割中的一大问题. kernel_seze代表卷积核的大小.图片上的卷积核大小为3. 那么layer2的感受域大小为 1+(3-1)x1=3 ...原创 2021-07-17 14:12:35 · 767 阅读 · 1 评论