模型量化(pytorch)

1、量化简介

1.1、量化介绍

<1>一般我们都将float32量化到qint8。

<2>模型参数中的bias一般是不进行量化操作的,仍然保持float32的数据类型。

<3>weight在浮点模型训练收敛之后一般就已经固定住了,所以根据原始数据就可以直接量化。

<4>activation会因为每次输入数据的不同,导致数据范围每次都是不同的,所以针对这个问题,在量化过程中专门会有一个校准过程,即提前准备一个小的校准数据集,在测试这个校准数据集的时候会记录每一次的activation的数据范围,然后根据记录值确定一个固定的范围。

1.2、量化方法

1.2.1、训练后动态量化(Post Training Dynamic Quantization)

官方地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值