- 博客(20)
- 收藏
- 关注
原创 白话GPU-04 从48G RTX 4090分析RTX 5090魔改128G的技术路线
随着RTX 4090被魔改为48GB非官方版并批量生产流入市场之后,如今有传RTX 5090也被从官方的32GB显存魔改升级至128GB显存,但尚未批量生产流入市场。那么本文将从48GB的RTX 4090魔改技术路线分析RTX 5090魔改的可行性。
2025-09-15 10:23:05
741
原创 白话GPU-03之围剿NVLink?CXL、UALink及产品一文详解
CXL的诞生源于一个关键的行业问题:传统PCIe接口在缓存一致性、内存共享和低延迟通信方面逐渐显露出不足。随着异构计算(CPU、GPU、FPGA及AI加速器)的迅猛发展,这些瓶颈日益突出。当谈及高速互联技术时,英伟达无疑占据了显著位置,其NVLink/NVSwitch及InfiniBand为全球互联技术的发展指明了方向,促使PCIe总线成为GPU互联的关键技术路径。天下苦英伟达久矣,全球的云服务、芯片、网络设备厂商希望通过联合构建开放协议与标准来试图改变英伟达在GPU互联网技术与产品层面一家独大局面。
2025-09-12 10:16:00
1141
原创 如何在实际应用中平衡YOLOv12的算力需求和检测精度?
YOLO 的最新架构为 YOLOv12,其对算力的要求因模型版本、输入分辨率、硬件平台、推理精度等因素而有所不同。在实际应用中平衡 YOLOv12 的算力需求和检测精度,需要结合具体场景的硬件限制、精度要求、实时性需求等因素,通过模型选型、技术优化、策略调整等多维度手段实现。以下是具体方法。
2025-09-11 15:10:40
971
原创 白话GPU-02之超高速公路NVLink、NVSwitch、SXM一文详解
NVLink是NVIDIA开发的一项高速互连技术,主要用于GPU之间以及GPU与CPU之间的高效数据通信。它旨在解决传统PCIe总线在带宽和延迟上的瓶颈,特别适合人工智能(AI)、高性能计算(HPC)和大型数据分析等需要大规模并行计算的工作负载。
2025-09-11 14:40:31
659
原创 YOLO算力优化方案,AI研究需关注
YOLO 模型的算力优化是在保证检测精度可接受的前提下,通过模型压缩、硬件适配、推理加速等手段降低计算成本、提升运行效率的关键环节。以下从模型层面、量化与压缩、硬件加速、推理策略四个维度,提供可落地的算力优化方案,覆盖从算法设计到工程部署的全流程
2025-09-10 11:27:06
933
原创 YOLO的算力要求?各类AI研究需要关注
若为嵌入式 / 边缘场景:优先选择 YOLOv8n/v11-S,搭配 INT8 量化 + 320x320 分辨率,算力需求控制在 2 TOPS 以内;初步实施可使用线上云服务器:如“智算云扉https://waas.aigate.cc/productService、算吧 https://www.suanba.cc/index”等租赁平台,支持按量计费。若为桌面 / 云端场景:选择 YOLOv8m/v11-L,搭配 FP16+640x640 分辨率,算力需求 20-50 TOPS 即可满足实时性;
2025-09-09 11:08:49
1288
原创 白话GPU-01之高速公路PCIe一文详解
PCIe(Peripheral Component Interconnect Express)在GPU服务器中是连接GPU与服务器其他核心部件(特别是CPU和系统内存)的“高速公路”,其存在于主板之上,它的带宽、延迟和拓扑结构直接决定了GPU能否高效地工作。
2025-09-09 10:30:13
927
原创 AIGC 算力提升:多维度协同优化路径
AIGC(生成式人工智能)的算力需求随模型规模(如千亿参数大模型)、生成任务复杂度(如图像高清生成、长文本创作)呈指数级增长,单纯依赖硬件堆叠难以高效满足需求。算力提升需从硬件升级、算法优化、软件框架、系统架构、数据处理五大维度协同推进,实现 “算力密度提升” 与 “算力利用率优化” 双重目标。
2025-09-08 14:21:24
1092
原创 AIGC 落地应用对算力的要求?从模型训练到推理的分析
随着生成式人工智能 (Artificial Intelligence Generated Content, AIGC) 技术的快速发展,从文本生成到图像创作,从视频生成到 3D 建模,各类 AIGC 应用对算力的需求呈现爆发式增长。AIGC 模型的参数量从最初的数百万增长到现在的千亿甚至万亿级别,模型复杂度的提升直接导致了对计算资源的巨大需求。2025 年,AIGC 已经从实验室研究阶段进入广泛的产业应用阶段,不同场景下的算力需求差异可达数个数量级。
2025-09-05 10:40:35
1030
原创 AIGC需要适配4090D-24GB吗?如何选择合适的云算平台?
AIGC 是否需要适配 4090D-24GB,取决于具体的应用场景和需求。4090D-24GB 具有较大的显存和较强的计算能力,在很多 AIGC 场景中具有优势,但并非所有 AIGC 任务都必须使用该显卡。本文将具体分析
2025-09-04 12:09:56
1095
原创 AIGC 算力如何优化?全链路技术路径与实践
AIGC(生成式人工智能)的算力消耗极高,尤其在大模型训练(如 GPT-4、文心一言)和高并发推理(如 AI 绘画、对话机器人)场景中,算力成本往往成为落地瓶颈。算力优化的核心目标是在保证生成质量的前提下,降低算力消耗、提升计算效率、扩大服务规模,需从模型、硬件、软件、数据、部署等全链路切入。
2025-09-03 10:25:39
1080
原创 AIGC的算力要求是什么?各类AI研究需要关注
AIGC(生成式人工智能)的算力需求并非固定值,而是由模型规模、任务类型、生成质量 / 速度、训练与推理场景等多维度共同决定,且不同场景下的算力差异可达数个数量级。要理解其算力需求,需从 “核心定义→影响因素→分场景需求→优化方向” 逐步拆解。
2025-09-02 11:24:02
1386
原创 如何优化ComfyUI在不同硬件配置下的算力表现?
优化 ComfyUI 在不同硬件配置下的算力表现,核心是通过参数调整、资源管理、技术优化等手段,平衡生成质量与硬件负载,最大化利用现有硬件性能。以下是针对不同场景的具体优化策略
2025-09-01 11:17:05
950
原创 如何评估ComfyUI在不同硬件配置下的算力表现
要评估 ComfyUI 在不同硬件配置下的算力表现,需要通过标准化测试任务结合硬件性能监控,从生成效率、资源占用和稳定性三个维度进行量化分析。本文是具体的评估方法和典型配置的对比参考:
2025-08-29 13:31:58
915
原创 comfyUI对算法及算力的要求
ComfyUI 是一款基于 Stable Diffusion 的强大且模块化的图形用户界面和后端工具,它对算法和算力均有一定要求。
2025-08-28 11:40:24
910
原创 不同AI视频生成模型的制作时长受哪些因素影响?
视频生成模型的制作时长受多种技术和工程因素影响,不同模型的差异可能源于其架构设计、硬件配置及优化策略。
2025-08-26 14:29:53
664
原创 AI研究员必看:手把手教你选对GPU,租用算力不再花冤枉钱
要确保算力资源精准匹配 AI 研究需求,需遵循 “需求量化→资源匹配→实测验证→动态适配” 的逻辑,从基础资源、配合调度(实际性能)、运营维护、应用服务等多维度层层把关,具体可拆解为5个核心步骤。
2025-08-25 14:11:18
1222
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人