求解模糊分布式柔性作业车间调度问题

引言

        在智能制造日益发展的背景下,企业生产模式逐步从单一工厂制造转变为多工厂协同的分布式制造。这一多工厂模式能够有效地减少规模效应,实现资源的合理配置,进而降低成本和提高生产效率。在此背景下的分布式柔性作业车间调度问题(Distributed flexible job shop scheduling problem,DFJSP)被众多学者广泛关注和研究,DFJSP 是传统柔性作业车间与分布式车间调度问题的一个结合,现已被证明为 NP-hard 问题。

问题描述

        本文研究的模糊分布式柔性作业车间调度(FDFJSP)可以描述为:n 个工件 J={J1,J2,…,Jn}被分配到 q 个位于不同位置的加工厂 F={F1,F2,…,Fq}加工,如图 1 所示。其中每一个加工厂都是一个柔性作业车间,且配备一系列加工机器 M={M1,M2,…,Mq},每个工件 Ji 需要完成 ui 道加工工序。Oi,j 表示工件 i 的第 j 道工序,可以加工 Oi,j 的机器组成 Oi,j 的可选机器集 Mi,j。每个工序 Oi,j 在可选机器集 Mi,j 中选择一台机器进行加工。

        本文用三角模糊数t~  f,k i,j=(t1,t2,t3)来表征加工时间,其中 t1 为上界,即最乐观值,t3 为下界,即最悲观值,t2 为主值,即最大可能值。

        FDFJSP 的目标是分配工厂并且安排工件加工顺序以及相应的加工机器,使某个或多个调度指标最优。由此可将 FDFJSP 划分为 3 个子问题:确定加工厂的任务分配,确定工序的加工顺序和确定工序的机器选择。

问题假设

(1)每个加工厂都可以完成任一工件的加工;

(2)每个工件只能分配到一个加工厂加工;

(3)工件在加工过程中不得在加工厂之间转移;  

(4)工序一旦开始加工则不能停止,直至该工序结束;

(5)一道工序同一时刻只在一台机器上加工;

(6)一台机器同一时刻仅能加工一个工件。

        三角模糊数的基本运算规则,包括加法、比较和取大运算。对于两个三角模糊数X~=(x1,x2,x3),Y~=(y1,y2,y3),三种运算的规则如下:

 

 符号定义

        为方便描述,引入以下数学符号进行说明:n为工件总数;q 为加工厂总数;f 代表加工厂索引,且 f = 1,2,…,q;mf 为加工厂 f 中的机器数;k,l 代表机器索引,且 k,l = 1,2,…,mf;i 代表工件索引,且 i = 1,2,…,n;ui 为工件 i 的工序数;j 代表工序索引;r 代表加工顺序索引;Oi,j 代表工件 i 的第 j 道工序;Mf,k 代表加工厂 f 中的第 k 台机器;t~  f,k i,j代表工序 Oi,j 在机器 Mf,k 上的模糊加工时间;E~f,k,r代表机器 Mf,k 上加工的第 r 道工序的模糊开始加工时间;Qf,k 代表机器 Mf,k 上加工的工序数目;S~i,j代表工序 Oi,j 的模糊开始加工时间;C~i,j代表工序 Oi,j的模糊结束加工时间;C~i代表工件 i 的模糊完成加工时间;C~max代表最大模糊完工时间;Xf,k i,j是决策变量,若工序 Oi,j 在机器 Mf,k 上加工则为 1,否则为 0;Yf i是决策变量,若工件 i 被分配到加工厂 f 加工则为1,否则为 0;Zf,k,r i,j是决策变量,若工序 Oi,j 是机器Mf,k 上加工的第 r 道工序则为 1,否则为 0。

模型建立

         式(1)是目标函数,表示最大模糊完工时间是指所有工件模糊完成加工时间的最大值;等式约束(2)表示工件的模糊完工时间是最后一道工序的模糊完工时间;式(3)表示工序的模糊完工时间等于模糊开始加工时间加上模糊加工时间;式(4)是工序顺序约束,表示同一工件的工序必须按照顺序加工;式(5)是机器约束,表示一台机器同一时间只能加工一道工序;式(6)表示一个工件所有工序只能在一个加工厂内加工;式(7)表示一道工序只能在一台机器上加工,式(8)和式(9)表示决策变量的取值范围。 

使用的算法

基于改进灰狼优化算法

文献来源

[1] 求解模糊分布式柔性作业车间调度问题_唐红涛[J]

### 关于分布式柔性作业车间调度的MATLAB实现 对于分布式柔性作业车间调度 (Distributed Flexible Job Shop Scheduling, DFJSS),研究主要集中在优化算法的设计以及如何有效分配任务到不同机器上。然而,在提供的参考资料中并未直接提及DFJSS的具体MATLAB实现[^1]。 尽管如此,可以考虑利用一些通用的机器学习库来构建自定义解决方案。例如 `scikit-learn` 是最受欢迎的Python库之一,虽然不是专门针对MATLAB开发,但是其理论基础和方法论同样适用于其他编程环境下的应用开发[^2]。不过需要注意的是,这些工具主要用于数据处理、特征提取等方面的支持工作,而不是直接提供调度问题求解方案。 为了找到更贴合需求的信息源,建议关注以下几个方面: - **学术论文**:许多最新的研究成果会发布在IEEE Xplore Digital Library 或者 Google Scholar 上面,通过查阅相关文献可以获得启发并了解当前领域内的最佳实践案例。 - **开源项目平台**:GitHub 和 GitLab 等平台上可能存在由研究人员分享出来的实验代码片段或是完整的软件包,这将是获取具体实现细节的好去处。 - **专业技术论坛**:像Stack Overflow这样的社区里聚集了大量的开发者和技术爱好者,他们可能会讨论过类似的课题,并给出有价值的见解或链接指向有用的资料。 另外值得注意的是,由于该类问题是NP难问题的一部分,因此通常采用启发式搜索算法(如遗传算法GA)、模拟退火SA等近似计算方式来进行求解。MATLAB本身具备强大的数值分析能力和丰富的内置函数集,非常适合用来编写此类复杂系统的仿真程序。 ```matlab % 这是一个简单的例子展示如何初始化种群用于遗传算法解决调度问题 function population = initPopulation(popSize, chromosomeLength) % 初始化随机二进制字符串作为个体基因型表示法 population = randi([0 1], popSize, chromosomeLength); end ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值