二叉搜索树的后序遍历序列

根据输入的整数数组,判断其是否符合二叉搜索树的后序遍历序列。通过递归方式,确定根节点,将数组分为左子树和右子树,并确保左子树所有元素小于根节点,右子树所有元素大于根节点。递归终止条件是空树,最终依据二叉搜索树性质进行验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      题目描述:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则输出Yes,否则输出No。假设输入的数组的任意两个数字都互不相同。


    思路:找出数组中的根节点,将数组分为左右子树,递归判断是否满足二叉搜索树的性质:

  1. 左子树都比自己小。
  2. 右子树都比自己大。
  3. 如果按照后序遍历,先左后右最后根的顺序来遍历树,数组的最后一个元素肯定是自己(父节点)
  4. 然后剩余的部分分成两个部分,第一部分都比自己小(左子树部分),第二部分都比自己大(右子树部分),
  5. 递归检验出是否是二叉搜索树的后序遍历(判断是否符合二叉排序树的性质)。
递归函数:
  1. 递归的终止条件是当前树的结点总数为0
  2. 判断是否是二叉排序树的方法:首先,找到第一个大于根结点的结点位置,将数组分为两部分,判断右子树中的全部结点是否均大于根结点的值


<span style="font-family:Microsoft YaHei;">#include <stdio.h>  
#include <stdlib.h>  

int judge_bst(int *arr, int len)  
{  
    int i, j, root;  
       
    // 递归终止条件  
    if (len <= 0)  
        return true;  //如果数组为空则返回0;
   
    root = *(arr + len - 1);  
   
    // 区分左子树  
    for (i = 0; i < len - 1; i ++) {  
        if (*(arr + i) > root)  
            break;  
    }  
   
    // 查找右子树是否符合要求  
    for (j = i; j < len - 1; j ++) {  
        if (*(arr + j) < root)   
            return false;  
    }  
   
    // 递归的判断左右子树是否是二叉搜索树  
    int left, right;  
    left = true;  
    left = judge_bst(arr, i);  
   
    right = true;  
    right = judge_bst(arr + i, len - 1 - i);  
   
    return (right && left);  
}  
</span>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值