python库---pandas使用简要说明

本文介绍如何使用 Python 的 Pandas 库创建和操作 DataFrame 对象,涵盖创建 DataFrame、添加数据、查看数据、数据筛选等核心功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在pandas中用DataFrame来组织数据,先创建一个简单的DataFrame:

#首先是引入pandas和numpy,这是经常配合使用的两个包,pandas依赖于numpy
import pandas
import numpy
#创建行索引
dates = pandas.date_range("20160101",periods = 6)
df = pandas.DataFrame(np.zeros([6,4]),index = dates,columns = list("ABCD"))
那么这样就创建了一个最简单的DataFrame数据,其中每一行是时间序列,每一列是ABCD标号。
在数据框后面添加一行:
df["E"] = list([1,2,3,4,5,6])
查看数据:
查看数据的前几行后者后几行(默认是五行)也可以自己指定
df.head()
df.hean(3)   查看前三行
df.tail()
df.tail(5)   查看后三行
查看数据框的索引:df.index
查看数据框的列名:df.columns
查看数据框中的数据:df.values
查看描述性统计:df.describe()   结果按列给出,包括每一列的数字个数,均值,方差,最小值,25%,50%,75%,最大值。
对数据进行转置:df.T 此时行和列交换,其中行号和列号也跟着变换
对数据进行排序:df.sort(columns = "C",ascending = 1),   按照第三列从小到大排序,默认是1,0是按照降序排序
查看数据中的特定的几行,切片df[1:3]左闭右开,索引从0开始。
或者按照index去索引,但是行必须有:来区别是按照行索引还是按照列来索引
查看数据中特定的列,按照列标号去索引:df[["A","B"]]
df.loc[]
可以按照行和列同时存在的方式来索引,只不过行不能跳跃访问
df.loc["20160101":"20160103",["A","B"]]
如果行跳跃访问只能使用下标的形式,用df.iloc[]
df.iloc:
数据框也允许像访问矩阵array一样访问DataFrame:
df.iloc[3],返回的是第四行的数值
df.iloc[3:5,0:2]  返回的是第三四行,0,1列
df.iloc[[1,2,4],[1,3]]:同时提取不连续的行和列的值:
df.iloc[1:3,:] 所有的行或者列可以用冒号来表示:获取第1,2行所有的列
df.iloc[1,1] :直接按照矩阵的方式来获取,获取第二行第二列的数字
df.iat[]
如果只是提取一个数字,可以用df.iat[1,1] == df.iloc[1,1] 只是这个效率会更高。
数据筛选:
筛选D列数据大于0的行:
df[df.D > 0]
多条件筛选行:
df[df.D > 0 & df.C < 0]
如果用D列来筛选数据,但是只需要得到某些列的数据:
df[df.D > 0][["A","B"]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值