LeetCode 42. 接雨水
📌题目描述
给定一个整数数组 height
,其中每个元素表示柱子的高度,每个柱子的宽度为 1。计算这个柱状图下雨后能接多少雨水。
示例:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
如图中所示,凹陷区域之间可以存水,总计为 6 个单位。
🧠解题思路
这个问题的本质是:对于每一根柱子,我们要判断它上面最多能存多少水。
对第 i
根柱子来说,它能存的水取决于:
min(左边最高柱子, 右边最高柱子) - 当前高度
✅ 解法一:动态规划
我们先预处理两个数组:
-
leftMax[i]
表示第 i 位置左侧(包括自己)最高的柱子高度 -
rightMax[i]
表示第 i 位置右侧(包括自己)最高的柱子高度
然后遍历整个数组,计算每一根柱子上可以存的水。
Java 代码如下:
public class Solution {
public int trap(int[] height) {
int n = height.length;
if (n == 0) return 0;
int[] leftMax = new int[n];
int[] rightMax = new int[n];
// 初始化 leftMax
leftMax[0] = height[0];
for (int i = 1; i < n; i++) {
leftMax[i] = Math.max(leftMax[i - 1], height[i]);
}
// 初始化 rightMax
rightMax[n - 1] = height[n - 1];
for (int i = n - 2; i >= 0; i--) {
rightMax[i] = Math.max(rightMax[i + 1], height[i]);
}
// 计算总水量
int total = 0;
for (int i = 0; i < n; i++) {
total += Math.min(leftMax[i], rightMax[i]) - height[i];
}
return total;
}
}
时间复杂度: O(n)
空间复杂度: O(n)
✅ 解法二:双指针(空间优化)
我们发现,其实并不需要额外数组,只用两个指针从两边向中间夹逼,同时维护左右的最大高度即可。
Java 代码如下:
public class Solution {
public int trap(int[] height) {
int left = 0, right = height.length - 1;
int leftMax = 0, rightMax = 0;
int total = 0;
while (left < right) {
if (height[left] < height[right]) {
if (height[left] >= leftMax) {
leftMax = height[left];
} else {
total += leftMax - height[left];
}
left++;
} else {
if (height[right] >= rightMax) {
rightMax = height[right];
} else {
total += rightMax - height[right];
}
right--;
}
}
return total;
}
}
时间复杂度: O(n)
空间复杂度: O(1)
❓小思考:leftMax 是否应该包含当前位置?
不少同学初学时会有疑问:
“左边最高柱子不应该排除当前位置自己吗?否则逻辑上不通。”
这个问题其实取决于你怎么定义 leftMax[i]
:
-
如果你定义为 “从 0 到 i 的最大值” —— 就要包含自己。
-
如果你想要 “i 左边的最大值” —— 那么可以用
height[i - 1]
来初始化。
最终结果是一样的,只要你的逻辑和实现一致即可。
🎯总结
-
动态规划解法清晰易懂,适合入门
-
双指针解法空间更优,适合面试冲刺
-
理解雨水计算公式的本质比背代码更重要
ps:感谢小cha的大力支持。