LeetCode 42. 接雨水

LeetCode 42. 接雨水

📌题目描述

给定一个整数数组 height,其中每个元素表示柱子的高度,每个柱子的宽度为 1。计算这个柱状图下雨后能接多少雨水。

示例:

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6

如图中所示,凹陷区域之间可以存水,总计为 6 个单位。


🧠解题思路

这个问题的本质是:对于每一根柱子,我们要判断它上面最多能存多少水。

对第 i 根柱子来说,它能存的水取决于:

min(左边最高柱子, 右边最高柱子) - 当前高度

✅ 解法一:动态规划

我们先预处理两个数组:

  • leftMax[i] 表示第 i 位置左侧(包括自己)最高的柱子高度

  • rightMax[i] 表示第 i 位置右侧(包括自己)最高的柱子高度

然后遍历整个数组,计算每一根柱子上可以存的水。

Java 代码如下:

public class Solution {
    public int trap(int[] height) {
        int n = height.length;
        if (n == 0) return 0;

        int[] leftMax = new int[n];
        int[] rightMax = new int[n];

        // 初始化 leftMax
        leftMax[0] = height[0];
        for (int i = 1; i < n; i++) {
            leftMax[i] = Math.max(leftMax[i - 1], height[i]);
        }

        // 初始化 rightMax
        rightMax[n - 1] = height[n - 1];
        for (int i = n - 2; i >= 0; i--) {
            rightMax[i] = Math.max(rightMax[i + 1], height[i]);
        }

        // 计算总水量
        int total = 0;
        for (int i = 0; i < n; i++) {
            total += Math.min(leftMax[i], rightMax[i]) - height[i];
        }

        return total;
    }
}

时间复杂度: O(n)
空间复杂度: O(n)


✅ 解法二:双指针(空间优化)

我们发现,其实并不需要额外数组,只用两个指针从两边向中间夹逼,同时维护左右的最大高度即可。

Java 代码如下:

public class Solution {
    public int trap(int[] height) {
        int left = 0, right = height.length - 1;
        int leftMax = 0, rightMax = 0;
        int total = 0;

        while (left < right) {
            if (height[left] < height[right]) {
                if (height[left] >= leftMax) {
                    leftMax = height[left];
                } else {
                    total += leftMax - height[left];
                }
                left++;
            } else {
                if (height[right] >= rightMax) {
                    rightMax = height[right];
                } else {
                    total += rightMax - height[right];
                }
                right--;
            }
        }

        return total;
    }
}

时间复杂度: O(n)
空间复杂度: O(1)


❓小思考:leftMax 是否应该包含当前位置?

不少同学初学时会有疑问:

“左边最高柱子不应该排除当前位置自己吗?否则逻辑上不通。”

这个问题其实取决于你怎么定义 leftMax[i]

  • 如果你定义为 “从 0 到 i 的最大值” —— 就要包含自己。

  • 如果你想要 “i 左边的最大值” —— 那么可以用 height[i - 1] 来初始化。

最终结果是一样的,只要你的逻辑和实现一致即可


🎯总结

  • 动态规划解法清晰易懂,适合入门

  • 双指针解法空间更优,适合面试冲刺

  • 理解雨水计算公式的本质比背代码更重要


ps:感谢小cha的大力支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值