【Leetcode】818. Race Car 818. 赛车

本文介绍了解决赛车问题的两种方法:Dijkstra算法和动态规划。赛车问题是在一条无限直线上,利用加速和减速操作使赛车到达目标位置。通过Dijkstra算法寻找最短路径和动态规划方法,文章详细阐述了如何高效地解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1
2

解法

AkA^kAk表示连续的k个A,容易分析出,它会在该方向上走2k−12^k-12k1步,我们可以将最后的结果表示为Ak0RAk1...AknRA^{k_0}RA^{k_1}...A^{k_n}RAk0RAk1...AknR,最后一个R可以去掉
它用数学表达式写出来就是:(2k0−1)+(2k2−1)+...−(2k1−1)−....(2^{k_0}-1)+(2^{k_2}-1)+...-(2^{k_1}-1)-....(2k01)+(2k21)+...(2k11)....
有个结论:

设K为target的二进制位数,那么有target≤2K−1target\le2^K-1target2K1
如果要超过target后再往回走,最多会走到2K−12^K-12K1的位置,不可以再往后走了,因为假如再多走S,正向一步走了S,反向要抵消这一步需要至少log(S)log(S)log(S)步。

解法一:DIJSTRA

我们把图里的每个点i表示为【沿该方向向target走还差i距离】
初始为正向,那么i=targeti=targeti=target,所以起点是dist[target]=0
从点i可以去哪些点呢?我们由上文的分析可以知道kj≤Kk_j\le KkjK,所以从点i可以通过走20−12^0-120121−12^1-121122−12^2-1221、…2K−12^K-12K1步,然后再掉头,即是附加RRRARARARA2RA^2RA2RAKRA^KRAKR,它们分别增加1、2、3、…、K+1步。
在没有加R的时候,剩余的距离为i−(2t−1)i-(2^t-1)i(2t1),由于掉头了,那么剩余的距离变成(2t−1)−i(2^t-1)-i(2t1)i,因为要倒着走才能到target了。
所以每个点i将会联通K+1个点。

现在我们用dijstra算法,每次取步数最少的那个点iii,它就是真正到点i的最少步数,然后再看看从点i走的点是否能改善距离。

需要注意的是,数轴上每个整数位置都可能成为点i,这样循环就不会停了,这时候要用上上面的结论,我们的车不可能跑出[−(2K−1),2K−1][-(2^K-1),2^K-1][(2K1),2K1],这就让点的个数变得有限了。

class Solution(object):
    def racecar(self, target):
        """
        :type target: int
        :rtype: int
        """
        K = target.bit_length()
        up = (1<<K)-1
        from heapq import heappush,heappop
        queue = [(0,target)]
        dist = {target:0}
        while queue:
            # print queue
            d,t = heappop(queue)
            if t in dist and dist[t]<d:continue
            for k in xrange(K+1):
                d2,t2 = d+k+1,(1<<k)-1-t
                if t2==0:
                    d2-=1
                if abs(t2)<=up and (t2 not in dist or dist[t2]>d2):
                    dist[t2]=d2
                    heappush(queue,(d2,t2))
        return dist[0]

解法二:DP

dp[t]dp[t]dp[t]表示走t距离用的最小步数
我们走到一个target,有三种情况:

  1. 如果target刚好等于2K−12^K-12K1,那么就刚好要走K步。

  2. 永远不超过这个target,走到一个位置,反回去几步,再向前走。我们一定要正向走到不能再走,即走到2K−1−12^{K-1}-12K11处。因为:

    首先,从上面的表达式我们知道,每个AkiRA^{k_i}RAkiR小节的顺序不影响结果。那么我们可以假设,下标同为偶数的kik_iki是递减排列的。
    那么,此时最大的k0k_0k0一定是K-1,否则,假如是更小的值k,从2k−12^k-12k12K−1−12^{K-1}-12K11这段距离用后面更更小的kik_iki来走,肯定花费的步数更多。

    走到2K−1−12^{K-1}-12K11处再掉头,花费K步(AK−1RA^{K-1}RAK1R)。然后我们需要枚举往回走j步(0≤j&lt;K−10\le j&lt;K-10j<K1)再掉头,花费j+1步(AjRA^jRAjR)。现在我们离target的距离缩短为target−(2K−1−1)+(2j−1)target-(2^{K-1}-1)+(2^j-1)target(2K11)+(2j1),即target−2K−1+2jtarget-2^{K-1}+2^jtarget2K1+2j,它要花费dp[target−2K−1+2j]dp[target-2^{K-1}+2^j]dp[target2K1+2j]步,所以总花费步数为dp[target−2K−1+2j]+K+j+1dp[target-2^{K-1}+2^j]+K+j+1dp[target2K1+2j]+K+j+1

  3. 超过这个target,然后往回走。从上面的结论可知,我们最多走到2K−12^K-12K1的位置,即花费K+1步(AKRA^KRAKR)。
    然后我们就要往回走(2K−1)−target(2^K-1)-target(2K1)target距离,这个距离要花dp[(2K−1)−target]dp[(2^K-1)-target]dp[(2K1)target]步。
    总共花费的步数是dp[(2K−1)−target]+K+1dp[(2^K-1)-target]+K+1dp[(2K1)target]+K+1

综上所述,那么dp[target]dp[target]dp[target]就在上面的所有候选者里选最小值

class Solution(object):
    def racecar(self, target):
        """
        :type target: int
        :rtype: int
        """
        INF = 3*target
        f = [INF]*(target+1)
        f[0] = 0
        for t in xrange(1,target+1):
            k = t.bit_length()
            if t+1==1<<k:
                f[t]=k
                continue
            u = t-(1<<(k-1))
            for j in xrange(k-1):
                f[t]=min(f[t],f[u+(1<<j)]+k+j+1)
            if (1<<k)-t<t:
                f[t] = min(f[t],k+1+f[(1<<k)-t])
        return f[target]
### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值