解法
令AkA^kAk表示连续的k个A,容易分析出,它会在该方向上走2k−12^k-12k−1步,我们可以将最后的结果表示为Ak0RAk1...AknRA^{k_0}RA^{k_1}...A^{k_n}RAk0RAk1...AknR,最后一个R可以去掉
它用数学表达式写出来就是:(2k0−1)+(2k2−1)+...−(2k1−1)−....(2^{k_0}-1)+(2^{k_2}-1)+...-(2^{k_1}-1)-....(2k0−1)+(2k2−1)+...−(2k1−1)−....
有个结论:
设K为target的二进制位数,那么有target≤2K−1target\le2^K-1target≤2K−1
如果要超过target后再往回走,最多会走到2K−12^K-12K−1的位置,不可以再往后走了,因为假如再多走S,正向一步走了S,反向要抵消这一步需要至少log(S)log(S)log(S)步。
解法一:DIJSTRA
我们把图里的每个点i表示为【沿该方向向target走还差i距离】
初始为正向,那么i=targeti=targeti=target,所以起点是dist[target]=0
。
从点i可以去哪些点呢?我们由上文的分析可以知道kj≤Kk_j\le Kkj≤K,所以从点i可以通过走20−12^0-120−1、21−12^1-121−1、22−12^2-122−1、…2K−12^K-12K−1步,然后再掉头,即是附加RRR、ARARAR、A2RA^2RA2R…AKRA^KRAKR,它们分别增加1、2、3、…、K+1步。
在没有加R的时候,剩余的距离为i−(2t−1)i-(2^t-1)i−(2t−1),由于掉头了,那么剩余的距离变成(2t−1)−i(2^t-1)-i(2t−1)−i,因为要倒着走才能到target了。
所以每个点i将会联通K+1个点。
现在我们用dijstra算法,每次取步数最少的那个点iii,它就是真正到点i的最少步数,然后再看看从点i走的点是否能改善距离。
需要注意的是,数轴上每个整数位置都可能成为点i,这样循环就不会停了,这时候要用上上面的结论,我们的车不可能跑出[−(2K−1),2K−1][-(2^K-1),2^K-1][−(2K−1),2K−1],这就让点的个数变得有限了。
class Solution(object):
def racecar(self, target):
"""
:type target: int
:rtype: int
"""
K = target.bit_length()
up = (1<<K)-1
from heapq import heappush,heappop
queue = [(0,target)]
dist = {target:0}
while queue:
# print queue
d,t = heappop(queue)
if t in dist and dist[t]<d:continue
for k in xrange(K+1):
d2,t2 = d+k+1,(1<<k)-1-t
if t2==0:
d2-=1
if abs(t2)<=up and (t2 not in dist or dist[t2]>d2):
dist[t2]=d2
heappush(queue,(d2,t2))
return dist[0]
解法二:DP
令dp[t]dp[t]dp[t]表示走t距离用的最小步数
我们走到一个target,有三种情况:
-
如果target刚好等于2K−12^K-12K−1,那么就刚好要走K步。
-
永远不超过这个target,走到一个位置,反回去几步,再向前走。我们一定要正向走到不能再走,即走到2K−1−12^{K-1}-12K−1−1处。因为:
首先,从上面的表达式我们知道,每个AkiRA^{k_i}RAkiR小节的顺序不影响结果。那么我们可以假设,下标同为偶数的kik_iki是递减排列的。
那么,此时最大的k0k_0k0一定是K-1,否则,假如是更小的值k,从2k−12^k-12k−1到2K−1−12^{K-1}-12K−1−1这段距离用后面更更小的kik_iki来走,肯定花费的步数更多。走到2K−1−12^{K-1}-12K−1−1处再掉头,花费K步(AK−1RA^{K-1}RAK−1R)。然后我们需要枚举往回走j步(0≤j<K−10\le j<K-10≤j<K−1)再掉头,花费j+1步(AjRA^jRAjR)。现在我们离target的距离缩短为target−(2K−1−1)+(2j−1)target-(2^{K-1}-1)+(2^j-1)target−(2K−1−1)+(2j−1),即target−2K−1+2jtarget-2^{K-1}+2^jtarget−2K−1+2j,它要花费dp[target−2K−1+2j]dp[target-2^{K-1}+2^j]dp[target−2K−1+2j]步,所以总花费步数为dp[target−2K−1+2j]+K+j+1dp[target-2^{K-1}+2^j]+K+j+1dp[target−2K−1+2j]+K+j+1
-
超过这个target,然后往回走。从上面的结论可知,我们最多走到2K−12^K-12K−1的位置,即花费K+1步(AKRA^KRAKR)。
然后我们就要往回走(2K−1)−target(2^K-1)-target(2K−1)−target距离,这个距离要花dp[(2K−1)−target]dp[(2^K-1)-target]dp[(2K−1)−target]步。
总共花费的步数是dp[(2K−1)−target]+K+1dp[(2^K-1)-target]+K+1dp[(2K−1)−target]+K+1
综上所述,那么dp[target]dp[target]dp[target]就在上面的所有候选者里选最小值
class Solution(object):
def racecar(self, target):
"""
:type target: int
:rtype: int
"""
INF = 3*target
f = [INF]*(target+1)
f[0] = 0
for t in xrange(1,target+1):
k = t.bit_length()
if t+1==1<<k:
f[t]=k
continue
u = t-(1<<(k-1))
for j in xrange(k-1):
f[t]=min(f[t],f[u+(1<<j)]+k+j+1)
if (1<<k)-t<t:
f[t] = min(f[t],k+1+f[(1<<k)-t])
return f[target]