题目描述
在一个地图上有 N (N≤20) 个地窖,每个地窖中埋有一定数量的地雷。同时,给出地窖之间的连接路径。当地窖及其连接的数据给出之后,某人可以从任一处开始挖地雷,然后可以沿着指出的连接往下挖(仅能选择一条路径),当无连接时挖地雷工作结束。设计一个挖地雷的方案,使某人能挖到最多的地雷。
输入格式
有若干行。
第 1 行只有一个数字,表示地窖的个数 N。
第 2 行有 N 个数,分别表示每个地窖中的地雷个数。
第 3 行至第 N+1 行表示地窖之间的连接情况:
第 3 行有 n−1 个数(0 或 1),表示第一个地窖至第 2 个、第 3 个 …… 第 n 个地窖有否路径连接。如第 3 行为 11000⋯0,则表示第 1 个地窖至第 2 个地窖有路径,至第 3 个地窖有路径,至第 4 个地窖、第 5 个 …… 第 n 个地窖没有路径。
第 4 行有 n−2个数,表示第二个地窖至第 3 个、第 4 个 …… 第 n 个地窖有否路径连接。
……
第 n+1 行有 1 个数,表示第 n−1 个地窖至第 n 个地窖有否路径连接。(为 0 表示没有路径,为 1 表示有路径)。
输出格式
第一行表示挖得最多地雷时的挖地雷的顺序,各地窖序号间以一个空格分隔,不得有多余的空格。
第二行只有一个数,表示能挖到的最多地雷数。
输入输出样例
输入 #1
5
10 8 4 7 6
1 1 1 0
0 0 0
1 1
1
输出 #1
1 3 4 5
27
解题思路
主要思路就是DP,其中关键的状态转移方程即为:dp[i] = dp[j] + bomb[i]。在这道题中,我们用dp数组表示每个洞能挖出地雷的最大值,若dp[i]<dp[j] + bomb[i],即在i,j连通的情况下,i洞能挖出的地雷小于j洞能挖出的地雷加i中的地雷,则更新为j洞能挖出的加上i洞的地雷数。
AC代码
#include <bits/stdc++.h>
using namespace std;
int n,maxMines,start,sum;
int bomb[25];
int vis[25][25];
int path[25],dp[25];
int main() {
cin>>n;
memset(path,-1,sizeof(path));//初始化为-1
for(int i=0;i<n;i++){
cin>>bomb[i]; //输入每个地窖中地雷数量
}
for(int i=0;i<n;i++){
for(int j=i+1;j<n;j++){
cin>>vis[i][j];//第i个洞与第j个洞是否连接(j>i)
}
}
for (int i = 0; i < n; ++i) {
dp[i] = bomb[i];//初始化为每个地窖中的地雷数量
}
for (int i = n - 2; i >= 0; i--) {
for (int j = i + 1; j < n; j++) {
if (vis[i][j] && dp[i] < dp[j] + bomb[i]) {//若连通,且地雷更多
dp[i] = dp[j] + bomb[i];//更新dp[i]的值
path[i] = j;//挖到第j个洞
}
}
}
for (int i = 0; i < n; ++i) {
if (dp[i] > maxMines) {
maxMines = dp[i];//找出最大值
start = i;//记录想要得到最大值进入的第一个洞
}
}
cout << start + 1;//输出第一个洞
sum+=bomb[start];
while (path[start] != -1) {
start = path[start];
cout << " " << start + 1;
sum+=bomb[start];
}
cout << endl;
cout<<sum;
return 0;
}